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Abstract 
A new method for characterizing complex irregular 
shapes of natural objects (e.g. plant cells, aerosol 
particles) is presented. The method employs complex 
Fourier analysis rather than the traditional forms of the 
Fourier analysis. Digitized images of objects are 
processed and the contours are tracked by a classical 
boundary following technique. A new contour pre-
processing technique allows to normalize position, size 
and orientation of a contour. A new contour resampling 
technique results in a more precise polygonal 
approximation of the contour. The resampled contour is 
represented in a complex plane and its complex Fourier 
coefficients are computed. The technique is applied to the 
classification of individual algae cells and their 
agglomerates employing two different classification 
methods: hierarchical clustering and neural network. The 
results demonstrate the applicability of the method for the 
classification of complex irregular shapes. 
 
 
1. Introduction 
 
 The fundamental problem of shape quantification 
and classification is related to the difficulty of finding 
variables that unambiguously describe and discriminate 
the shape characteristics of objects regardless their size 
and orientation. Currently a large number of shape 
analysis methods are being used. The most commonly 
applied are based on Fourier coefficients, chain coding, 
fractal dimensions and dynamic shape factors. A general 
method has not been developed so far. 

The variety of the methods for shape 
characterization is explained by the large number of 
particular problems in this field. Each method mainly 
relates to its own class of problems. E.g. fractal analysis, 
being an appropriate tool for characterization of 
complicated shapes, cannot be applied in a case of regular 
shapes. Moreover, the use of fractal analysis often requires 
human interaction. The dynamic shape factors, introduced 
by Medalia [1], serve as another example. This method is 

based on the representation of a shape as an ellipsoid with 
equivalent radii of gyration about the central principal 
axes. In some cases this method is not sensitive enough; 
different shapes may result in similar shape factors. Both 
methods attempt to condense all the details of the shape 
into a single number. However, there can be an infinite 
number of visually different shapes having the same 
fractal dimension or similar shape factors. Alternatively it 
is possible to represent the shape with a set of numbers so 
that enough information is preserved to reconstruct the 
shape with sufficient precision. Fourier analysis is a 
common approach of such representation. Its classical (R, 
θ) form is useful in case of non re-entrant shapes but is 
almost useless in the case of re-entrant shapes [2]. The 
chain coding is a shape unrolling technique producing a 
list of numbers which can be interpreted as the changes of 
slope vs. position along the particle's silhouette edge. 
Chain code representation of the shape in combination 
with Fourier analysis is very effective method which 
allows to avoid problem with re-entrant shapes. It is 
proved to be successful in a surprising number of cases 
[3]. 

The above mentioned Fourier analyses methods 
require reduction of the number of Fourier coefficients. 
Normally only the first 10 to 20 coefficients are used for 
analysis and classification [2]. Contours reconstructed 
with the first 10 - 20 coefficients are well-smoothed 
versions of the original ones. Of course, such reduction 
leads to the loss of information contained in the contour. 
On the other hand it is possible to reduce the total number 
of points of the contour and keeping all Fourier 
coefficients. One way of doing this is to resample the 
contour at a finite number of points, put them into the 
complex plain and calculate the corresponding complex 
Fourier descriptor (CFD). Such descriptors were 
successfully used by many researchers for characterization 
and classification of various objects having pre-defined 
shapes (e.g. aircraft [4]). Normally an iterative type of 
classification algorithms is employed [4], which searches 
for the optimum match between the unknown shape and 
each reference shape. For a number of classification 
problems such as the classification of natural objects 
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(aerosol particles, plant cells, etc.) those algorithms are 
ineffective. Either such a library does not exists, or one 
wants to perform an unsupervised classification without 
using a library of reference shapes. Up to our knowledge 
only one attempt has been made to adopt CFDs for the 
classification of natural objects (quarts grains) [5]. In this 
application a large number of Fourier coefficients (256) 
were computed and additional statistical tests were applied 
to reduce the number of coefficients prior to classification. 
In this article we propose and test another approach to 
obtain and use the CFDs for the classification of the 
irregular complex shapes. The method employs a simple 
procedure to normalize the position, size and orientation 
of the contour, rather than the complicated complex 
Fourier coefficients preprocessing. Also a more precise 
contour resampling technique is employed instead of the 
simple, but inaccurate, resampling techniques normally 
used. In this way the number of complex Fourier 
coefficients used for classification is effectively reduced. 
For the classification of the shapes, unsupervised 
classification algorithms are adopted rather than iterative 
ones used for the pre-defined shape recognition. 
 
2. Method 
 
2.1. Complex Fourier descriptors 
 

From a digitized image of an object the contour is 
obtained using the classical method described in [6]. This 
contour consists of the L points (x(j), y(j)) in Euclidean 
space. We can consider this closed contour C in the 
complex plane. A point moving along the contour 
generates a discrete periodic complex function 

c j x j iy j( ) ( ) ( )= +  (1) 
with j = 0, 1, …, L-1. 

The discrete complex Fourier series expansion of 
c(j) is given by 
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where the coefficients Ak are obtained as the discrete 
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The sequence of complex coefficients {Ak} is the complex 
Fourier descriptor (CFD) of the given contour. 

In order to apply CFDs for shape classification 
some additional processing is required. 
 
2.2. Contour preprocessing 
 

The shape descriptors should be invariant to 

rotation, size and position differences in order to use them 
for classification purposes. This can be done by 
normalizing the CFDs after that they have been obtained 
[4, 5]. However, this normalization procedure of the CFDs 
is difficult especially for rotation and shift of the origin. 
Therefor we normalize the contour instead of 
normalization of its CFD. 

The contour’s center of mass (xm, ym) is determined 
and new contour coordinates are calculated as follows: 
( ( ), ( )) ( ( ) , ( ) )xnew j ynew j x j xm y j ym= − −  (4) 

After this translation the contour’s center of mass will 
have the coordinates (0, 0). 

To normalize the size of the contour, the largest 
distance d from the center of mass to the contour is 
calculated and the new, normalized contour coordinates 
are calculated as follows: 
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Normalization of the orientation and location of the 
starting-point of a contour is done as follows. The point 
(x', y') of a contour for which the distance d to the center 
of mass is largest is found and the contour is rotated 
around the center of mass as follows: 

xnew j x j y j j( ) ( ) ( ) cos( ( ))= + +2 2 α β  (6) 

ynew j x j y j j( ) ( ) ( ) sin( ( ))= + +2 2 α β  (7) 

where β(j) is the angle between the vectors ( )x j y j( ), ( )
−−−−−−−>

 

and ( )1,0
−−>

 and α is the angle between the vectors ( )x y' , '
−−−−>

 

and ( )1,0
−−>

. After this rotation the point (x', y') is moved to 
the position (1, 0) and will be used as the starting point of 
the contour. 
 
2.3. Contour resampling 
 

The number of the complex Fourier coefficients 
needed to reconstruct the contour equals to the number of 
the points of the contour L. In practice such description is 
too large for classification purposes. Moreover CFDs of 
different contours may have a different number of the 
coefficients so they cannot be compared. To eliminate 
these problems the contour should be resampled to make 
the total number of the contour’s points, L*, equal for all 
contours and as small as possible. 

Thomas et. al [5] proposed to do the resampling 
simply by taking every L/L* point of the contour. Our 
resampling technique is essentially different in the way the 
L* points of the resampled contour are obtained. First, the 
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curvature at every point of the contour is computed using 
the median filtered differencing as described in [7]. 
Second, the point of the contour at which the amplitude of 
the curvature is largest is determined and added to the list 
of the points forming the new, resampled contour. Third, 
the L/L* nearest neighborhood points (in the original the 
contour) of the found point are excluded from the further 
analysis. Steps 2 and 3 are repeated until L* points of the 
reconstructed contour are found. The graph in Fig. 1b 
shows the curvature of the contour depicted in Fig. 1a. 
The L* points (found as described above) are labeled with 
‘o’ (L = 1437, L* = 64). Only those points were used for 
the reconstruction of the resampled contour shown in Fig. 
1c. 
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Fig. 1. (a) contour of an algae cell agglomerate 
contains 1437 points; (b) plot of the curvature of 
the contour depicted in a; the points with highest 
curvature in certain intervals are labeled with ‘o’; 
the corresponding contour points make up the 
resampled contour; (c) resampled contour with 
64 points. 

This resampling technique minimizes the loss of 
information and allows to reduce the total number of 
contour points to a reasonably small number. The 
resampled contour is a polygon approximation of the real 
shape. Such an approximation is more robust and 
preserves more details compared to resampling at equally 
spaced intervals which results in a smoothed 
representation. 
 

2.4. Classification algorithms 
 

After performing the normalization and resampling, 
the CFD of the contour can be computed using Eq. 3 and 
applied directly for classification. However, in practice it 
is more convenient to use the sequence of modules of Ak, 
{|Ak|}, as shape descriptor, avoiding the need to handle 
complex numbers. 

Supervised and unsupervised methods were used to 
test the applicability of the shape descriptor {|Ak|}, derived 
as discussed above, for shape classification. Unsupervised 
classification was performed using hierarchical cluster 
analysis [8] as implemented in the IDAS software [9]. 
Supervised classification was performed with a three-layer 
feedforward neural network which was trained using  the 
stochastic back propagation training technique [10]. This 
part of the work was done using the NeuFrame software 
[11]. 
 
3. Application 
 

Fig. 2 shows scanning electron microscopy images 
of an individual algae cell and a cell agglomerate. During 
further automated analysis one is only interested in 
individual cells, creating the need to differentiate 
automatically between individual cells and cell 
agglomerates. 

  
Fig. 2. Scanning electron micrographs on an 
individual algae cell (a) and a cell agglomerate 
(b). 

A small collection of 30 scanning electron 
microscopy images: 24 images of individual sells and 6 
images of cell agglomerates was used. Binary images were 
obtained by a technique described in [12] and the contour 
following technique [6] was employed to extract the 
contours of the objects under study. The shape descriptor 
{|Ak|} with 64 coefficients was obtained for each object, 
using the contour preprocessing and resampling methods 
which were described above. Fig. 1c shows an example of 
the normalized and resampled contour of an algae 
agglomerate. The {|Ak|} obtained for an agglomerate and 
an individual cell are shown in Figs 3a and 3b 
respectively. 

b a 

a 

b

c 
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Fig. 3. The calculated shape descriptors {|Ak|} for 
an agglomerate of algae cells (a) and for an 
individual algae cell (b). 

A quantitative analysis of the population of the 
individual cells and agglomerates was performed using 
hierarchical clustering. The dendrogram, representing the 
results of hierarchical clustering is shown in Fig. 4. 

5 6 2 22 10 25 15 16 13 19 20 24 21 18 74 3 28 17 30 23 14 9 27 12 11 8 26 29 1

2 1  
Fig. 4. Dendrogram showing the results of the 
hierarchical clustering of algae cells and cell 
agglomerates. Cell agglomerates are labeled 
from 1 to 6, individual cells are labeled from 7 to 
30. Agglomerate #1 is misclassified. 

The presence of the two classes of objects is evident from 
this dendrogram. One agglomerate was classified as 
belonging to the class of individual cells due to the nearly 
rounded shape of this agglomerate. 

In practice it is more relevant to classify individual 
objects rather than to perform a quantitative analysis of a 
population. This was done using a three-layer feedforward 
network. A schematic representation and some 
characteristics of the network are given in Fig. 5. For the 
input layer a linear transfer function was used, whereas for 
the hidden layer and the output layer sigmoidal transfer 
functions were used. 

|A0|
|A1|

|A63|

 
Fig. 5. Schematic representation of the neural 
network used. 

The network was trained using the back-
propagation training technique on a very limited training 
set consisting of the shape descriptors {|Ak|} of 3 randomly 
chosen cell agglomerates and 6 randomly chosen 
individual cells. At the output layer 0 corresponded to 
agglomerates and 1 to individual cells. A random error of 
0.01 was added to the training set during the training of 
the neural network. The training was performed until the 
error reached its lowest value of 0.05 after 612 complete 
passes through the set of training data. The error graph of 
the training cycle is given in Fig. 6. 

 
Fig. 6. Error graph obtained during the training of 
the network. 

Next the set of 30 shape descriptors {|Ak|} was 
given to the trained network. The results of the 
corresponding outputs of the network are represented 
graphically in Fig. 7. For all algae cell agglomerates the 
network output is lower than 0.6 whereas for all individual 
cells the output is larger than 0.7. 

a 

b



Proceedings of the 13th International Conference on Pattern Recognition - ICPR'96, 
IEEE Computer Society Press, Los Alamitos, California, vol. 2, pp. 285-289. 

 289

0

0,2

0,4

0,6

0,8

1

1,2

A A A C C C C C C C C C C C C

 
Fig. 7. Outputs of the trained network for the 
cells (C) and cell agglomerates (A). 
 
4. Conclusion 
 

The concept of complex Fourier coefficients was 
used by many researches for the classification and 
recognition of pre-defined shapes. This work describes a 
new approach for obtaining complex Fourier descriptors 
that are invariant to position, size and orientation and are 
based on a more optimum resampling strategy. The 
complex Fourier coefficients can be used for classification 
and recognition of complex irregular shapes (plant cells, 
aerosol particles, etc.). Examples of supervised and 
unsupervised classifications of algae cells and their 
agglomerates show the practical applicability of the 
method. 
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