Convolutional Neural Nets & Image Exploration in Astronomy

Joshua Peek
STScI / MAST

with

Craig K. Jones, Jonathan Hargis, Rick White
hypothesis generation in the big data era is an unsolved problem
Astronomers know how to look at the sky in 3 ways:

- Black-Sky Segmentation
- Bespoke Algorithms
- Power Spectra
Astronomers know how to look at the sky in 3 ways:

- **Power Spectra**: is this a bunch of points?
- **Black-Sky Segmentation**: any image
- **Bespoke Algorithms**: is this a filament?
- **Random Field**: is this a Gaussian Random Field?
A tool to deal with complex raw pixel data is a critical missing piece.* beyond zooniverse
Neural Networks are actually pretty simple

Mass X_1

Color X_2
Neural Networks are actually pretty simple
Deep Neural Networks use Many Hidden Layers; hard for many inputs

\# Weights \propto \# neuron^2 \times \# layers
Convolutional Neural Networks are designed for images
CNNs are exploding in their usage in the astronomical literature.

Astronomy Convolutional Neural Net Papers by Year

Papers by Type

- strong
- solar
- time domain
- diffuse
- particle
- culture
- galaxy
- artifacts
- star/galaxy
- image
- probes
- photoz
- resolved
- spectra
Galaxy Morphology was the “starting gun” for astro CNNs

Dieleman+2015
CNNs can extract shape information from Weak Lensing maps.

Schmelzle+2017
CNNs are extraordinary for classifying artifacts

Zevin+2016, George+2017
CNNs are extraordinary for classifying artifacts
Transfer learning: many parts of networks are highly portable

Imagenet: $> 10^6$ images, > 1000 categories

George+2017
Transfer learning allows for unsupervised learning and discovery.

"None of the above"
"Extremely Loud"
"Blip"

unsupervised artifact clustering

George+2017
Transfer learning for image discovery in MAST?

velvet: 10%
binder: 8.2%
jean: 6.4%
stingray: 4.5%
hammerhead: 3.8%
book jacket: 3.1%
handkerchief: 2.1%
prayer rug: 1.5%
tiger shark: 1.4%
...

Image Cutouts Existing Network Feature Vector Clustered data

Peek, Jones, Hargis, White +2017
Transfer learning can be used to find similar structures in images.
Transfer learning can be used to find similar structures in images.
Transfer learning can be used to find similar structures in images.
Live demo of totally untested software!
What could go wrong!?
• Can transfer learning from terrestrial images inform us about astronomical image similarity?

• Will astronomers ever be willing to look at a plot with unlabeled axes?

• Do science centers and archives have a role to play in the machine learning landscape?

• What is the killer use case for this technology? Is there one?

• How will we know such a system works? Won’t work?
If you are interested in neural nets and astronomy join us at deepskieslab.com

PEOPLE

Camille Avestruz (co-convener)
KICP/Fermi Fellow at University of Chicago
Interests: Strong lensing, classification, regression
Affiliated research group/team: DeepSkies@Chicagoland

Brian Nord (co-convener)
Associate Scientist, Fermilab Machine Intelligence Group; Senior Member, Kavli Institute for Cosmological Physics at University of Chicago
Interests: Strong lensing, cosmological parameter estimation, autoencoders
Affiliated research group/team: DeepSkies@Chicagoland

Joshua Peek (co-convener)
Associate Astronomer & Project Scientist Data Science Mission Office, Space Telescope Science Institute
Interests: Interstellar Medium, Dust Reddening, ConvNets
Affiliated research group/team: DeepSkies@Baltimore
• hypothesis generation in the big data era is an unsolved problem

• we need new ways to explore images

• convolutional neural nets are being used, with some success, across astronomy

• transfer learning methods provide a way to search for similar images in big data sets

• We are building a prototype of such a system at MAST

• join us at deepskieslab.com