SELS:
A Secure E-mail List Service*

Himanshu Khurana
NCSA

Work done with Adam Slagell and Rafael Bonilla

Introduction to E-mail List Services

- E-mail List Services (ELSs) comprise
 - List Moderator (LM) – user/process that creates lists and controls list membership
 - List Server (LS) – creates lists, maintains list membership information, forwards e-mails, and optionally archives them
 - User/subscribers – subscriber to/ unsubscribe from lists with the help of LM, and send/receive e-mails with the help of LS

- Increasingly popular for exchange of both public and private content ⇒ security is an important concern
 - E.g., there are over 300,000 registered lists on LISTSERV while only 20% of them serve public content
Focus: Security Solutions for ELSs

- Various security solutions for two-party e-mail exchange (TPEE)
 - E.g., solutions for message confidentiality, integrity, authentication, and anti-spamming

- However, little or no work in providing similar solutions for ELSs

- In this work
 - Argue that a different set of solutions is required for ELSs
 - Provide solutions without adding additional components and imposing minimal overhead
 - Confidentiality, integrity, authentication, and anti-spamming
 - Describe a prototype implementation
Confidentiality, Integrity, and Authentication with S/MIME for TPEE

Alice

Base-64 encoded message

Bob

<table>
<thead>
<tr>
<th>Email Plaintext m</th>
<th>Sign $h(m)$ with SK_A</th>
<th>Encrypt $(m, Sig(m))$ with k</th>
<th>Encrypt k with PK_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., SHA-1 followed by RSA/DSS</td>
<td>e.g., 3DES, AES</td>
<td>e.g., El Gamal, RSA</td>
<td></td>
</tr>
</tbody>
</table>

- Other approaches for achieving confidentiality
 - PEM, PGP
 - Challenge: certificate distribution and validation
 - IBE (Boneh & Franklin), Identity-based mediated-RSA (Ding, Tsudik)
- Other approaches for achieving integrity and authentication
 - PEM, PGP
 - Challenge: certificate distribution and validation
Confidentiality, Integrity, and Authentication with PGP for TPEE

PKI: Bob’s encryption key PK_B

PKI: Alice’s signature verification key PK_A

Alice

Base-64 encoded message

<table>
<thead>
<tr>
<th>Email Plaintext m</th>
<th>Sign $h(m)$ with SK_A</th>
<th>Encrypt $(m, \text{Sig}(m))$ with k</th>
<th>Encrypt k With PK_B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>e.g., SHA-1 followed by RSA/DSS</td>
<td>e.g., AES</td>
<td>e.g., El Gamal, RSA</td>
</tr>
</tbody>
</table>

- **El Gamal encryption with key (g, p, PK_B) where $PK_B = g^{SK_B} \pmod{p}$ in \mathbb{Z}_p^***
 - choose a random number $r < p$
 - compute $c_1 = g^r \pmod{p}$; $c_2 = (PK_B)^r k \pmod{p}$
 - send (c_1, c_2)

- **El Gamal decryption with key (g, p, SK_B, PK_B)**
 - compute $c_1^{SK_B} \pmod{p} = g^{rSK_B} \pmod{p} = (PK_B)^r \pmod{p}$
 - compute $k = c_2 / c_1^{SK_B} \pmod{p}$
Confidentiality, Integrity and Authentication for ELSs

- **Confidentiality**

 ![Diagram showing encryption and decryption process]

 Problem: adversary can compromise LS to obtain e-mails

- **Possible Solutions**

 - Use cryptographic hardware to do decryption/encryption
 - Expensive, broken in the past (e.g., CCA application on IBM 4758)

 - Use group key management to distribute symmetric key to list members
 - Members need to be online to execute operations for key update

- **Our solution**

 - Use software-based proxy re-encryption at LS to transform encrypted e-mail between sender and receivers without requiring access to plaintext
 - Inexpensive, does not require members to be online for updates
 - Integrate (encryption) key distribution with user subscription

- **Integrity and Authentication**

 - Authentication goal includes notion that member must be a list subscriber

 - Our approach: Use digital signatures with LM providing certificate validation (w.r.t. list membership)
Anti-Spamming

- **Pricing Functions** (Proof of Computation)
 - Moderately hard CPU functions
 - Use hints to reduce difficulty of hard problems; e.g., extract square roots mod p with variable \(|p|\), hashCash
 - Memory bound functions
 - Independent of processor speeds; e.g., table-based searches that guarantee a min number of cache misses
 - Challenge: Trusting authorities that moderate use of pricing functions

- **Filters**
 - Keyword based; e.g., “be over 21”
 - Naive Bayesian
 - Train filters with sample e-mail
 - Challenge: False positives
Anti-Spamming

- **Legal**
 - Spam is a felony in VA
 - In CA, PA sexually explicit emails must have pre-fix: “ADV: ADLT”
 - Congress passed CAN SPAM act effective Jan 2004
 - Appropriate labeling, opt-out options
 - Challenge: Tracing, enforcement, jurisdiction

- **Digital Signatures**
 - Reject e-mail if signature does not match
 - Challenges
 - Large scale certificate distribution/revocation
 - Block use of e-mail for initiating communication/transactions

- **ELSs Goal: only subscribed users can send e-mail to list**
 - Use digital signatures with LM providing certificate validation
 - Use MACs as a cheaper alternative with LS participating actively
Introduction to Proxy Encryption*

- **Basic idea**
 - Convert ciphertext for one key into ciphertext for another key without revealing secrets keys or cleartext messages

- **Example construction based on El Gamal**
 - Keys for A, B: $(SK_A, PK_A), (SK_B, PK_B)$
 - Proxy key for transformation agent T: $\pi = (SK_B - SK_A)$
 - Encryption of m for Alice: $g^r, m(PK_A)^r$
 - Transformation of mesg for Bob by T: $g^r, m(PK_A)^r(g^r)^\pi = g^r, m.g^{r(SK_A+SK_B- SK_A)} = g^r, m(PK_B)^r$

- **Applications**
 - Key Escrow without revealing secret keys
 - Smartcard key management, personalization schemes

- **Challenge**
 - Trusted entity generates proxy key

Contribution: SELS; Solutions for

- **Confidentiality**
 - Solution using proxy encryption techniques whereby the plaintext is not exposed at LS; instead, LS simply transforms encrypted messages
 - LS archives e-mails in encrypted form and provide access on-demand
 - User subscription process used to distribute encryption keys without the need for a trusted third party

- **Integrity and authentication**
 - Solution using digital signatures where certificate validation is provided by LM

- **Anti-spamming**
 - Solution using digital signatures and MACs where LS discards any message not sent by a valid subscriber
SELS Overview

- Assumptions
 - LM is an independent entity not controlled by LS
 - Subscription e-mails between user, LM, and LS can be secured (e.g., PGP, passwords)
1. "Join" request
2. Choose r
3. TK = K_{LM} + r, Ticket(LS, r)
4. Choose r'
5. K_{U1} = TK + r'
6. r', Ticket
7. K'_{U1} = K_{LS} - r - r'

- K_{U1} + K'_{U1} = K_{LK}
- Only U1 knows K_{U1}
- U1 and LS compute H_{U1} = h(r')
SELS (Proxy) Encryption Scheme

\[K_{LM} + K_{LS} = K_{Ui} + K'_{Ui} = K_{LK} \]

Encrypt (El Gamal) with \(g^{K_{U1}} \)

Transform* with \(K'_{U1} \) and \(K'_{U2} \)

Decrypt (El Gamal) with \(K_{U2} \)

\[X = g^r, (g^{K_{U1}})^rm \]

* \(\Gamma_{(K'_{U1}, K'_{U2})}(X) = g^r, m(g^{K_{U1}})^rg^{K'_{U1}}(g^{rK'_{U2}})^{-1} = g^r, (g^{K_{LK} - K_{U2}})^rm = g^r, (g^{K_{U2}})^rm \)

(We show that the SELS encryption scheme is as secure as El Gamal in the random oracle model)
Sending E-mails

Key Store: $(SK_A, PK_A), H_{UA}$

Alice

- **Base-64 encoded message**
 - Email Plaintext m
 - $\text{Sig}(h(m))$ with SK_A
 - e.g., SHA-1 followed by RSA/DSS
 - $\text{Encrypt} (m, \text{Sig}(h(m)))$ with k
 - e.g., 3DES, AES
 - $\text{Encrypt} k$ with PK_A
 - $h(X)$ with H_{UA}

Bob

- **Base-64 encoded message**
 - Email Plaintext m
 - $\text{Sig}(h(m))$ with SK_A
 - e.g., SHA-1 followed by RSA/DSS
 - $\text{Encrypt} (m, \text{Sig}(h(m)))$ with k
 - e.g., 3DES, AES
 - $\text{Transform} k$ with $K'_{UA} K'_{UB}$
 - $h(Y)$ with H_{UB}

Key Store: Members’ corresponding private keys K'_{Ui}

Key Store: $(SK_B, PK_B), H_{UB}$
Additional Protocol Operations

- **Unsubscribing Users**
 - User sends request to LM who cosigns request and sends to LS
 - LS deletes user’s corresponding private key

- **Certificate validation**
 - LM sends occasional (e.g., monthly) updates on invalid certificates

- **Archiving and retrieval**
 - Archive after partial transformation; encrypted with K_{LK}
 - Complete transformation for user on request

- **Analysis**
 - If users have access to all e-mails, compromise of one user leads to compromise of all e-mails

- **Solution: Use key epochs**
 - Archive e-mails only for an epoch
 - LM changes K_{LK} every epoch (efficient: one e-mail from LM)
 - LM \rightarrow Users: r (via LS)
 - Users add r to private keys. LS adds r' to corres. private keys
 - New $K_{LK} = K_{LK} + r + r'$
Handling Compromise of LS

Compromise $\forall i \ K'_U, H_U$ \Rightarrow LS

X Confidentiality
X Authentication and Integrity
√ Spamming (limited)

Recovery: Re-instate LS. LM forces epoch change and update of MAC keys.

Simultaneous Compromise $K_{Uj};$ computes K_L, K_U $\forall i$ \Rightarrow U_j

√ Confidentiality (current epoch)
- enough to compromise U_j
X Authentication and Integrity
√ Spamming (limited)

Recovery: Requires LM to send e-mail to each user with updates for Private and MAC keys. Less expensive than re-establishing list

• If LM, LS compromised: re-establish list
• Insider threat: LS and User collusion
 • Difficult to detect
Implementation

- **SELS Prototype in Java**
 - Integrated with Eudora E-mail Client via command-line interface
 - Integrated with GnuPG Toolkit for standard Signature and Encryption operations

- **Components**
 - Crypto Utilities – SELS Enc/Dec, base64 encoding, random number generation, MACing, interface to GnuPG
 - List Mgmt – creating lists, subscribe users, manage lists
 - E-mail processing – process plaintext e-mail
 - Eudora Interface – send/receive e-mails

- **Work in Progress**
 - Plugin for Eudora, JavaMail
 - Integration with list server software; e.g., Mailman
Conclusions and Future Work

- Increasing use of ELS for exchanging private content ⇒ security is important

- Security for ELSs is significantly different from that for TPEE

- Provide solutions for confidentiality, integrity, authentication, and anti-spamming
 - E-mail plaintext not exposed at LS via proxy encryption

- Prototype implementation underway
 - Will develop plugins for Eudora, JavaMail
 - Will integrate SELS with common list server software; e.g., Mailman
Questions?