Deploying the TeraGrid PKI

Grid Forum Korea Winter Workshop
December 1, 2003

Jim Basney
Senior Research Scientist
National Center for Supercomputing Applications
University of Illinois
jbasney@ncsa.uiuc.edu
Grid-building Challenges

• Many challenges in deploying Grids
 – software compatibility
 – resource discovery (information services)
 – resource allocation
 – accounting (charging for resource usage)
 – performance optimization
 – monitoring / support / helpdesk
 – …
Managing Trust for Grid Single Sign-on

• A major Grid deployment challenge
• What CAs are trusted?
 – Can a CA gain universal acceptance for single sign-on?
 – What CA practices are acceptable?
 – Use hierarchical CAs or cross-certification?
• How do users obtain and manage credentials?
 – user enrollment, certificate renewal, private key security, …
• How are users authorized to use resources?
 – How are ACLs and authorization services managed?
• Consider the TeraGrid as a Case Study
Outline

• TeraGrid Overview
• Globus Security Infrastructure
 – Authentication and Authorization
 – Proxy Credentials
• TeraGrid Online CAs
• TeraGrid Single Sign-on
• Grid-Mapfile Management
• Credential Management
TeraGrid

Caltech: Data collection analysis
- 0.4 TF IA-64
- IA32 Datawulf
- 80 TB Storage

ANL: Visualization
- 1.25 TF IA-64
- 96 Viz nodes
- 20 TB Storage

SDSC: Data Intensive
- 4 TF IA-64
- DB2, Oracle Servers
- 500 TB Disk Storage
- 6 PB Tape Storage
- 1.1 TF Power4

NCSA: Compute Intensive
- 10 TF IA-64
- 128 large memory nodes
- 230 TB Disk Storage
- 3 PB Tape Storage
- GPFS and data mining

PSC: Compute Intensive
- 6 TF EV68
- 71 TB Storage
- 0.3 TF EV7 shared-memory
- 150 TB Storage Server

LEGEND
- Cluster
- Visualization Cluster
- Storage Server
- Shared Memory
- Disk Storage
- Backplane Router

Extensible Backplane Network

- LA Hub
- Chicago Hub
- 30 Gb/s connections
- 40 Gb/s connection

SDSC
- IA64
- Pwr4
- Sun

ANL
- IA32
- IA32

NCSA
- IA64
- GPFS

PSC
- EV7
- EV68
- Sun

NetApp
- Storage Server
Additional TeraGrid Sites
Building Something New

One Organization
(merge institutions)
- One sysadmin team
- One management team
- Distributed machine room, centralized control
 - e.g. Google data centers

The TeraGrid
(A Grid hosting environment)
- Single development environment
- Single software stack to learn
- Develop here, run there
- Run here, store there

Very Loose Collaboration
(current situation)
- Different MPIs
- Hit-and-miss grid software:
 - Globus version?
 - Condor-G?
 - MPICH-G2?
- Unique development environment

Not a Grid
- Applications are developed for the Grid because the barriers are low and the return large

Not a Grid, but with significant user investment, Grid applications can be developed

2003-12-01 Deploying the TeraGrid PKI, GFK Winter Workshop
TeraGrid and CMS

- Data and software testing challenge
 - test and validate analysis software
 - 100,000,000 events
- Testing approach
 - particle-detector interaction simulator (CMSIM)
 - energy deposition in the detector
 - ORCA (Object Reconstruction for CMS Analysis)
 - reconstruct QCD background sample
 - tracks and reconstructed particles, ready for analysis
- Computing, storage and networking
 - 1.1M SUs on the TeraGrid now
 - 400 processors through April 2005
 - 1M SUs on NCSA Platinum Pentium III cluster
 - 1.5M SUs on NCSA Tungsten Xeon cluster
 - 1 TB for production TeraGrid simulations
 - 400 GB for data collection on IA-32 cluster

http://cmsinfo.cern.ch/
Globus Security Infrastructure

- Credentials
 - asymmetric public/private key pair
 - X.509 certificate, signed by Certificate Authority, binds distinguished name to key pair

- Authentication (Who are you?)
 - proof of possession of private key
 - verify CA signature on X.509 certificate

- Authorization (What can you do?)
 - based on distinguished name in certificate
 - typically mapped to local account
GSI Mutual Authentication

Standard SSL/TLS Protocol
(summarized)

Client

random\textsubscript{c}

certificate\textsubscript{s} + random\textsubscript{s}

certificate\textsubscript{c} + \{ secret \}_{pubkey\textsubscript{s}}
+ signature\textsubscript{c}[h(random\textsubscript{c}, random\textsubscript{s}, ...)]

Server

\{ h(secret) \}_{secret}
GSI Mutual Authorization

• What is the client authorized to do on the server?
 – typically set by grid-mapfile

• Is the server trusted by the client?
 – i.e., is the server authorized by the client?
 – typically based on authenticated server identity matching the user’s request

• Client must have the ability to verify server certificates
 – must trust certificate of the CA that signed the server’s certificate
 – must have correct system clock
How to Authorize Clients?

• Access Control Lists
 – ex. Globus grid-mapfile
 – answer “Who can access this resource?”
 – need to maintain many distributed ACLs

• Capabilities
 – ex. SAML, X.509 PMI, VOMS, Akenti, CAS
 – answer “What can this person do?”
 – don’t need to distribute ACL updates
 – capability issuer maintains authorization database

• GGF OGSA Authorization WG
What to Authorize?

<table>
<thead>
<tr>
<th>What to Authorize</th>
<th>Keys</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examples</td>
<td>SSH, PGP, SPKI</td>
<td>X.509 PKI, GSI</td>
</tr>
<tr>
<td>Trusted Third Party?</td>
<td>None</td>
<td>CA signs certificates</td>
</tr>
<tr>
<td>Cost of re-keying?</td>
<td>Update ACLs with new public key</td>
<td>Obtain new certificate</td>
</tr>
</tbody>
</table>

- Names can be convenient to work with but…
- Common names are not unique identifiers
Globus Proxy Credentials

- New certificate and key pair
- Proxy certificate signed by user’s long-term private key
 - enter passphrase to decrypt private key
- Certificate has short lifetime
- Proxy private key remains unencrypted
- Authenticate with proxy credentials for the remainder of the session
Proxy Delegation Protocol

Delegator
- CA signs
- User signs
- User's Proxy A signs certificate
- Proxy B signs with proxy private key

Delegatee
- generate new key pair
- Proxy B signs proxy certificate request
TeraGrid PKI

• A single TeraGrid Certificate Authority is not feasible
 – many sites already have a CA
 – distributed model is preferable for Grids

• TeraGrid PMA evaluates CA trust
 – for interoperability, all TeraGrid sites should accept TeraGrid approved CAs
 – TeraGrid PMA distributes trusted CA certificates to users and administrators
TeraGrid Online CAs

• An **Online CA** allows users to authenticate and obtain PKI credentials immediately
 – without requiring the user to visit a registration authority, fax a copy of an institutional ID, etc.
 – without requiring the CA operator to manually approve each request
 – leveraging the site’s existing relationship with its users

• **Online CAs can return long-term or short-term credentials:**
 – users contact the online CA infrequently to obtain / renew long-term (1+ year) certificates, or
 – users contact the online CA daily to obtain short-term (12 hour) credentials
 – TeraGrid includes examples of both types of online CAs
CACL

• NCSA and SDSC have online CAs that return long-term credentials
 – OpenSSL-based CACL online CA software developed at SDSC
 – at NCSA, online CA recently replaced offline CA
• Users login to NCSA or SDSC cluster and run a command to obtain 2-4 year credentials
 – credentials stored in ~/.globus as usual
 – requires users to manage their long-term key and certificate files
• For more information:
 – http://www.npaci.edu/CA/
 – http://grid.nicea.uiuc.edu/ca/
KCA

- PSC runs a Kerberized online CA (KCA)
- Users obtain short-term (12 hour) Kerberos tickets at login
- KCA command allows users to authenticate with Kerberos ticket to obtain Globus credentials
 - KCA credentials have short lifetime equal to Kerberos ticket lifetime
 - stored unencrypted in /tmp to be used like Globus proxy credentials
- No need to issue CRLs as there are no long-term certificates to revoke
- For more information:
 - http://www.citi.umich.edu/projects/kerb_pki/
 - http://www.psc.edu/certificate-authority/
TeraGrid Account Creation

- US National Science Foundation committees evaluate research proposals and allocate TeraGrid resources to scientists
- Allocation info is entered into TeraGrid Accounting Database
- Account creation requests sent to sites
 - via TeraGrid Account Transaction System
- Scientist receives account information in the mail
 - includes username(s) and initial password(s) for the site(s)
TeraGrid Grid Single Sign-on

• Users can access all TeraGrid resources using their Grid proxy credentials
 – using GSISSH, GRAM, and GridFTP
 – no need to remember different usernames and passwords

• For users with no PKI certificate
 – request a certificate from a TeraGrid CA
 – TeraGrid Account Transaction System adds user’s distinguished name to grid-mapfiles (planned)

• For users that already have a PKI certificate
 – issuing CA must be trusted by TeraGrid sites
 – gx-map command allows users to add additional distinguished names to grid-mapfiles
GX-Map

• A Globus grid-mapfile management tool
• Allows users to add distinguished names to the grid-mapfile
 – mapped only to that user’s account
• Similar to adding SSH Authorized Keys
• For more information:
 – http://www.sdsc.edu/~kst/gx-map

"/C=US/O=NCSA/CN=Jim Basney" jbasney
"/C=US/O=NPACI/OU=SDSC/CN=Keith Thompson" kst
"/C=US/O=PSC/CN=dsimmel" dsimmel
"/DC=org/DC=doegrids/CN=Sandra Bittner " bittner
...
"/C=UK/O=eScience/CN=Joe User" juser
Credential Management

- TeraGrid users can store their credentials in an online MyProxy repository
 - credentials encrypted with the user’s passphrase
 - users can retrieve delegated proxy credentials from the online repository when/where needed
- MyProxy provides credential mobility
 - users need not manually copy certificate and key files between machines
 - long-term keys protected on the MyProxy server
- For more information:
 - http://myproxy.ncsa.uiuc.edu/
Credential Renewal

- Unsolved problem for TeraGrid
- Long-lived tasks or services need credentials
 - task lifetime is difficult to predict
- Don’t want to delegate long-lived credentials
 - fear of compromise
- Instead, renew credentials as needed during the task’s lifetime
 - renewal service provides a single point of monitoring and control
 - renewal policy can be modified at any time
 - for example, disable renewals if compromise is detected or suspected

- Possible solutions using MyProxy
 - EDG Proxy Renewal Service
 - Condor-G with GRAM proxy refresh
Managing Multiple Credentials

- Will a single identity credential per user suffice?
 - Difficult to achieve trust in a single CA across many organizations
 - Advanced services require authorization credentials

- Pieces of a solution
 - Credential negotiation protocols (WS-SecurityPolicy, …)
 - Online credential services

- Want to retain single sign-on and ease-of-use
Summary

• TeraGrid has deployed a PKI for single sign-on via the Globus Security Infrastructure
 – Online CAs (CACL, KCA)
 – user control of grid-mapfile authorization (gx-map)
 – online credential repository (MyProxy)
• Ongoing work
 – credential renewal
 – managing multiple credentials

Thank you! Any questions?

Jim Basney <jbasney@ncsa.uiuc.edu>