Introduction to GPU Programming

Volodymyr (Vlad) Kindratenko
Innovative Systems Laboratory @ NCSA
Institute for Advanced Computing Applications and Technologies (IACAT)
Tutorial Goals

• Become familiar with NVIDIA GPU architecture
• Become familiar with the NVIDIA GPU application development flow
• Be able to write and run simple NVIDIA GPU kernels in CUDA
• Be aware of performance limiting factors and understand performance tuning strategies
Schedule

• 9:00-11:00 part I (introduction)
• 11:00-11:15 break
• 11:15-13:00 part II (examples)
• 13:00-14:00 lunch
• 14:00-16:00 part III (advanced topics)
• 16:00-16:15 break
• 16:15-18:00 part IV (lab time)
Part I

• Introduction
• Hands-on: getting started with NCSA GPU cluster
• Anatomy of a GPU application

• Break
Introduction

• Why use Graphics Processing Units (GPUs) for general-purpose computing
• Modern GPU architecture
 – NVIDIA
• GPU programming overview
 – Libraries
 – CUDA C
 – OpenCL
 – PGI x64+GPU
Why GPUs?

Raw Performance Trends

Graph is courtesy of NVIDIA
Why GPUs?

Memory Bandwidth Trends

Graph is courtesy of NVIDIA
GPU vs. CPU Silicon Use

Graph is courtesy of NVIDIA
NVIDIA GPU Architecture

- A scalable array of multithreaded Streaming Multiprocessors (SMs), each SM consists of
 - 8 Scalar Processor (SP) cores
 - 2 special function units for transcendental functions
 - A multithreaded instruction unit
 - On-chip shared memory
- GDDR3 SDRAM
- PCIe interface

Figure is courtesy of NVIDIA
NVIDIA GeForce9400M G GPU

- 16 streaming processors arranged as 2 streaming multiprocessors
- At 0.8 GHz this provides
 – 54 GFLOPS in single-precision (SP)
- 128-bit interface to off-chip GDDR3 memory
 – 21 GB/s bandwidth
NVIDIA Tesla C1060 GPU

- 240 streaming processors arranged as 30 streaming multiprocessors
- At 1.3 GHz this provides
 - 1 TFLOPS SP
 - 86.4 GFLOPS DP
- 512-bit interface to off-chip GDDR3 memory
 - 102 GB/s bandwidth
NVIDIA Tesla S1070 Computing Server

- 4 T10 GPUs

Graph is courtesy of NVIDIA
GPU Use/Programming

• GPU libraries
 – NVIDIA’s CUDA BLAS and FFT libraries
 – Many 3\(^{rd}\) party libraries

• Low abstraction lightweight GPU programming toolkits
 – CUDA C
 – OpenCL

• High abstraction compiler-based tools
 – PGI x64+GPU
CUDA C APIs

- higher-level API called the **CUDA runtime API**
 - myKernel<<<grid size>>>(args);

- low-level API called the **CUDA driver API**
 - cuModuleLoad(&module, binfile);
 - cuModuleGetFunction(&func, module, "mykernel");
 - ...
 - cuParamSetv(func, 0, &args, 48);
 - ...
 - cuParamSetSize(func, 48);
 - cuFuncSetBlockSize(func, ts[0], ts[1], 1);
 - cuLaunchGrid(func, gs[0], gs[1]);
Getting Started with NCSA GPU Cluster

- Cluster architecture overview
- How to login and check out a node
- How to compile and run an existing application
NCSA AC GPU Cluster
GPU Cluster Architecture

• Servers: 32
 – CPU cores: 128

• Accelerator Units: 32
 – GPUs: 128
GPU Cluster Node Architecture

- **HP xw9400 workstation**
 - 2216 AMD Opteron 2.4 GHz dual socket dual core
 - 8 GB DDR2
 - InfiniBand QDR

- **S1070 1U GPU Computing Server**
 - 1.3 GHz Tesla T10 processors
 - 4x4 GB GDDR3 SDRAM
Accessing the GPU Cluster

• Use Secure Shell (SSH) client to access AC
 – `ssh USER@ac.ncsa.uiuc.edu` (User: tra1 – tra54; Password: ???)
 – You will see something like this printed out:

 Mar 30, 2010
 ac and all compute nodes updated to the release version of CUDA 3.0 from the
 beta version of 3.0, which has been in place for months.

 May 11, 2010
 GeForce 480 Fermi based GPU now available on ac login node, in addition to
 a GeForce 280 (more similar to Tesla GPUs)

 Questions? Contact Jeremy Enos jenos@ncsa.uiuc.edu
 (for password resets, please contact help@ncsa.uiuc.edu)

 13:52:30 up 10 days, 22:23, 32 users, load average: 0.54, 0.29, 0.20
 Job state_count = Transit:0 Queued:101 Held:0 Waiting:0 Running:111 Exiting:0

 [tra1@ac ~]$ _
Installing Tutorial Examples

• Run this sequence to retrieve and install tutorial examples:
 cd
cp /tmp/tutorial.tgz .
tar -xvzf tutorial.tgz
cd tutorial
ls

src1 src2 src3
Accessing the GPU Cluster

Laptop 1

Laptop 2

... ...

Laptop 30

ac (head node)

You are here

ac01 (compute node)

ac02 (compute node)

... ...

ac32 (compute node)
Requesting a Cluster Node for Interactive Use

• Run `qstat` to see what other users do

• Run `qsub -l walltime=02:00:00` to request a node with a single GPU for 2 hours of interactive use
 – You will see something like this printed out:

```
qsub: waiting for job 64424.acm to start
qsub: job 64424.acm ready
[gpuXYZ@ac32 ~]$ _
```
Requesting a Cluster Node

Laptop 1 Laptop 2 ... Laptop 30

ac (head node)

ac01 (compute node) ac02 (compute node) ac32 (compute node)

You are here
Some useful utilities installed on AC

• As part of NVIDIA driver
 – nvidia-smi (NVIDIA System Management Interface program)

• As part of NVIDIA CUDA SDK
 – deviceQuery
 – bandwidthTest

• As part of CUDA wrapper
 – wrapper_query
 – showgputime/showallgputime (works from the head node only)
nvidia-smi

Timestamp : Mon May 24 14:39:28 2010
Unit 0:
 Product Name : NVIDIA Tesla S1070-400 Turn-key
 Product ID : 920-20804-0006
 Serial Number : 0324708000059
 Firmware Ver : 3.6
 Intake Temperature : 22 C
 GPU 0:
 Product Name : Tesla T10 Processor
 Serial : 2624258902399
 PCI ID : 5e710de
 Bridge Port : 0
 Temperature : 33 C
 GPU 1:
 Product Name : Tesla T10 Processor
 Serial : 2624258902399
 PCI ID : 5e710de
 Bridge Port : 2
 Temperature : 30 C
 Fan Tachs:
 #00: 3566 Status: NORMAL
 #01: 3574 Status: NORMAL
 ...
 #12: 3564 Status: NORMAL
 #13: 3408 Status: NORMAL
 PSU:
 Voltage : 12.01 V
 Current : 19.14 A
 State : Normal
 LED:
 State : GREEN

Unit 1:
 Product Name : NVIDIA Tesla S1070-400 Turn-key
 Product ID : 920-20804-0006
 Serial Number : 0324708000059
 Firmware Ver : 3.6
 Intake Temperature : 22 C
 GPU 0:
 Product Name : Tesla T10 Processor
 Serial : 1930554578325
 PCI ID : 5e710de
 Bridge Port : 0
 Temperature : 33 C
 GPU 1:
 Product Name : Tesla T10 Processor
 Serial : 1930554578325
 PCI ID : 5e710de
 Bridge Port : 2
 Temperature : 30 C
 Fan Tachs:
 #00: 3584 Status: NORMAL
 #01: 3570 Status: NORMAL
 ...
 #12: 3572 Status: NORMAL
 #13: 3412 Status: NORMAL
 PSU:
 Voltage : 11.99 V
 Current : 19.14 A
 State : Normal
 LED:
 State : GREEN
CUDA Device Query (Runtime API) version (CUDART static linking)
There is 1 device supporting CUDA
Device 0: "Tesla T10 Processor"
CUDA Driver Version: 3.0
CUDA Runtime Version: 3.0
CUDA Capability Major revision number: 1
CUDA Capability Minor revision number: 3
Total amount of global memory: 4294770688 bytes
Number of multiprocessors: 30
Number of cores: 240
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 16384 bytes
Total number of registers available per block: 16384
Warp size: 32
Maximum number of threads per block: 512
Maximum sizes of each dimension of a block: 512 x 512 x 64
Maximum sizes of each dimension of a grid: 65535 x 65535 x 1
Maximum memory pitch: 2147483647 bytes
Texture alignment: 256 bytes
Clock rate: 1.30 GHz
Concurrent copy and execution: Yes
Run time limit on kernels: No
Integrated: No
Support host page-locked memory mapping: Yes
Compute mode: Exclusive (only one host thread at a time can use this device)
There are 4 GPUs per cluster node

When requesting a node, we can specify how many GPUs should be allocated
- e.g., `-l nodes=1:ppn=4` in `qsub` resources string will result in all 4 GPUs allocated

By default, only one GPU per node is allocated
Compiling and Running an Existing Application

• cd tutorial/src1
 – vecadd.c - reference C implementation
 – vecadd.cu – CUDA implementation

• Compile & run CPU version
 gcc vecadd.c -o vecadd_cpu
 ./vecadd_cpu
 Running CPU vecAdd for 16384 elements
 C[0]=2147483648.00 ...

• Compile & run GPU version
 nvcc vecadd.cu -o vecadd_gpu
 ./vecadd_gpu
 Running GPU vecAdd for 16384 elements
 C[0]=2147483648.00 ...
nvcc

• Any source file containing CUDA C language extensions must be compiled with nvcc
• nvcc is a compiler driver that invokes many other tools to accomplish the job
• Basic nvcc usage
 – nvcc <filename>.cu [-o <executable>]
 • Builds release mode
 – nvcc -deviceemu <filename>.cu
 • Builds device emulation mode (all code runs on CPU)
 – -g flag allows to build debug mode for gdb debugger
 – nvcc --version
Anatomy of a GPU Application

- Host side
- Device side
void vecAdd(int N, float* A, float* B, float* C) {
 for (int i = 0; i < N; i++) C[i] = A[i] + B[i];
}

int main(int argc, char **argv) {
 int N = 16384; // default vector size
 float *A = (float*)malloc(N * sizeof(float));
 float *B = (float*)malloc(N * sizeof(float));
 float *C = (float*)malloc(N * sizeof(float));
 vecAdd(N, A, B, C); // call compute kernel
 free(A); free(B); free(C);
}
Adding GPU support

Host

CPU

Host Memory

A

B

C

GPU card

GPU

Device Memory

gA

gB

gC
Memory Spaces

• CPU and GPU have separate memory spaces
 – Data is moved across PCIe bus
 – Use functions to allocate/set/copy memory on GPU
• Host (CPU) manages device (GPU) memory
 – cudaMemcpy(void** pointer, size_t nbytes)
 – cudaFree(void* pointer)
 – cudaMemcpy(void* dst, void* src, size_t nbytes, enum cudaMemcpyKind direction);
 • returns after the copy is complete
 • blocks CPU thread until all bytes have been copied
 • does not start copying until previous CUDA calls complete
 – enum cudaMemcpyKind
 • cudaMemcpyHostToDevice
 • cudaMemcpyDeviceToHost
 • cudaMemcpyDeviceToDevice
Adding GPU support

```c
int main(int argc, char **argv)
{
    int N = 16384;  // default vector size

    float *A = (float*)malloc(N * sizeof(float));
    float *B = (float*)malloc(N * sizeof(float));
    float *C = (float*)malloc(N * sizeof(float));

    float *devPtrA, *devPtrB, *devPtrC;

    cudaMalloc((void**)&devPtrA, N * sizeof(float));
    cudaMalloc((void**)&devPtrB, N * sizeof(float));
    cudaMalloc((void**)&devPtrC, N * sizeof(float));

    cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(devPtrB, B, N * sizeof(float), cudaMemcpyHostToDevice);

    cudaMemcpy(devPtrA, A, N * sizeof(float), cudaMemcpyHostToDevice);
    cudaMemcpy(devPtrB, B, N * sizeof(float), cudaMemcpyHostToDevice);
}
```
Adding GPU support

vecAdd<<<N/512, 512>>>(devPtrA, devPtrB, devPtrC);

cudaMemcpy(C, devPtrC, N * sizeof(float), cudaMemcpyDeviceToHost);

cudaFree(devPtrA);
cudaFree(devPtrB);
cudaFree(devPtrC);

free(A);
free(B);
free(C);

}
GPU Kernel

• **CPU version**
  ```c
  void vecAdd(int N, float* A, float* B, float* C)
  {
    for (int i = 0; i < N; i++)
      C[i] = A[i] + B[i];
  }
  ```

• **GPU version**
  ```c
  __global__ void vecAdd(float* A, float* B, float* C)
  {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    C[i] = A[i] + B[i];
  }
  ```
Introduction to GPU programming

• CUDA programming model
• GPU memory hierarchy
• CUDA C
CUDA Programming Model

• A CUDA kernel is executed by an array of threads
 – All threads run the same code (SPMD)
 – Each thread has an ID that it uses to compute memory addresses and make control decisions

• Threads are arranged as a grid of thread blocks
 – Threads within a block have access to a segment of shared memory

```c
float x = input[threadID];
float y = func(x);
output[threadID] = y;
...```

```
Kernel Invocation Syntax

\[
\text{vecAdd} \lllllllllllllll (\text{devPtrA}, \text{devPtrB}, \text{devPtrC});
\]

\[
\text{int } i = \text{blockIdx.x} \times \text{blockDim.x} + \text{threadIdx.x};
\]
Mapping Threads to the Hardware

- Blocks of threads are transparently assigned to SMs
 - A block of threads executes on one SM & does not migrate
 - Several blocks can reside concurrently on one SM

- Blocks must be independent
 - Any possible interleaving of blocks should be valid
 - Blocks may coordinate but not synchronize
 - Thread blocks can run in any order

Each block can execute in any order relative to other blocks.

Slide is courtesy of NVIDIA
CUDA Programming Model

- A kernel is executed as a grid of thread blocks
 - Grid of blocks can be 1 or 2-dimensional
 - Thread blocks can be 1, 2, or 3-dimensional
- Different kernels can have different grid/block configuration
- Threads from the same block have access to a shared memory and their execution can be synchronized
GPU Memory Hierarchy

• Global (device) memory
 – Accessible by all threads as well as host (CPU)
 – Data lifetime is from allocation to deallocation

![Diagram showing GPU Memory Hierarchy with Host memory and two Device memories connected by cudaMemcpy() function]
GPU Memory Hierarchy

- Global (device) memory
GPU Memory Hierarchy

• Local storage
 – Each thread has own local storage
 – Mostly registers (managed by the compiler)
 – Data lifetime = thread lifetime

• Shared memory
 – Each thread block has own shared memory
 • Accessible only by threads within that block
 – Data lifetime = block lifetime
GPU Memory Hierarchy

• 1D grid
 – 2 thread blocks
• 1D block
 – 2 threads
GPU Memory Hierarchy

<table>
<thead>
<tr>
<th>Memory</th>
<th>Location</th>
<th>Cached</th>
<th>Access</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Register</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Local</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>One thread</td>
<td>Thread</td>
</tr>
<tr>
<td>Shared</td>
<td>On-chip</td>
<td>N/A</td>
<td>R/W</td>
<td>All threads in a block</td>
<td>Block</td>
</tr>
<tr>
<td>Global</td>
<td>Off-chip</td>
<td>No</td>
<td>R/W</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Constant</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
<tr>
<td>Texture</td>
<td>Off-chip</td>
<td>Yes</td>
<td>R</td>
<td>All threads + host</td>
<td>Application</td>
</tr>
</tbody>
</table>