Introduction to GPU Programming

Volodymyr (Vlad) Kindratenko
Innovative Systems Laboratory @ NCSA
Institute for Advanced Computing Applications and Technologies (IACAT)
Part III

• Performance considerations
 – Host side
 • Events, streams, compute capability
 • Host memory, data transfer
 • Thread management
 – Device side
 • Global memory, memory coalescing
 • Shared memory, registers
 • Threads, blocks, occupancy
 • Arithmetic instructions, control flow
 – Final recommendations

• Hands-on: optimizing matrix multiplication

• Break
Events

- Events can be asynchronously inserted and then recorded when all tasks preceding the event have completed

```c
cudaEvent_t start, stop;
float time;

cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, 0);
kernel<<<grid, threads>>> ( d_odata, d_idata, size_x, size_y, NUM_REPS);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);  // in milliseconds

cudaEventDestroy(start);
cudaEventDestroy(stop);
```
Streams

• Streams are used to manage concurrency
• Stream is a sequence of commands that execute in order
 – Created as a stream object
 – Used in kernel launch and memory copy operations

 cudaStream_t s;
 cudaStreamCreate(&s);
 cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s);
 kernel<<<grid, block, 0, s>>>(otherData_d);
Compute Capability

• Specs and supported features of a given GPU depend on its compute capability
 – 1.0, 1.1, 1.2, 1.3, 2.0

• Before using a feature, it is a good idea to query the device at run-time to verify that the required feature is supported

 cudaDeviceProp props;
 cudaGetDeviceProperties(&props, device);
cudaDeviceProp struct

- int canMapHostMemory - Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer
- int clockRate - Clock frequency in kilohertz
- int computeMode - Compute mode
- int deviceOverlap - Device can concurrently copy memory and execute a kernel
- int integrated - Device is integrated as opposed to discrete
- int kernelExecTimeoutEnabled - Specified whether there is a run time limit on kernels
- int major - Major compute capability
- int maxGridSize [3] - Maximum size of each dimension of a grid
- int maxThreadsDim [3] - Maximum size of each dimension of a block
- int maxThreadsPerBlock - Maximum number of threads per block
- size_t memPitch - Maximum pitch in bytes allowed by memory copies
- int minor - Minor compute capability
- int multiProcessorCount - Number of multiprocessors on device
- char name [256] - ASCII string identifying device
- int regsPerBlock - 32-bit registers available per block
- size_t sharedMemPerBlock - Shared memory available per block in bytes
- size_t textureAlignment - Alignment requirement for textures
- size_t totalConstMem - Constant memory available on device in bytes
- size_t totalGlobalMem - Global memory available on device in bytes
- int warpSize - Warp size in threads
-

6
Memory Alignment

cudaMalloc(&dev_a, m*n*sizeof(float));

Matrix columns are not aligned at 64-bit boundary

cudaMallocPitch(&dev_a, &n, n*sizeof(float), m);

Matrix columns are aligned at 64-bit boundary

\(n \) is the allocated (aligned) size for the first dimension (the \textit{pitch}), given the requested sizes of the two dimensions.
Memory Alignment Example

cudaMallocPitch((void**)&devPtr, &pitch, width * sizeof(float), height);

myKernel<<<100, 192>>>(devPtr, pitch);

// device code
__global__ void myKernel(float* devPtr, int pitch)
{
 for (int r = 0; r < height; ++r) {
 float* row = (float*)((char*)devPtr + r * pitch);
 for (int c = 0; c < width; ++c) {
 float element = row[c];
 }
 }
}
Page-locked host memory

- Page-locked (or pinned) memory can be allocated on the host using cudaMemcpyHost() or cudaMemcpyHostAlloc() subroutines
 - Higher PCIe transfer rate can be attained
 - By default memory block can be used only by the CPU thread that created it, but it also can be shared between any CPU threads when declared with cudaMemcpyHostAllocPortable flag
 - By default pinned memory is cacheable, but it also can be allocated as write-combining by passing flag cudaMemcpyHostAllocWriteCombined
 - Does not use L1/L2 CPU cache and is not snooped during PCIe data transfer = higher PCIe transfer bandwidth
 - Very slow when reading from it on the host, thus should only be used for writing on the host
Asynchronous data transfers

• cudaMemcpy() calls are blocking
• cudaMemcpyAsync() calls are non-blocking
 – Can be used to overlap computation on the host and data transfer and computation on the GPU

```
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
kernel<<<grid, block>>>(a_d);
cpuFunction();
```
Asynchronous data transfers

• When using different streams, it is also possible to overlap data transfer with the kernel computation

```c
cudaStreamCreate(&s1);
cudaStreamCreate(&s2);
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, s1);
kernel<<<grid, block, 0, s2>>>(otherData_d);
```

• Useful for double-buffering
Mapped host memory (zero copy)

• A block of page-locked host memory can also be mapped into the address space of the device by passing cudaHostAllocMapped flag

```c
float *a_host, *a_device;
...
cudaGetDeviceProperties(&prop, 0);
if (!prop.canMapHostMemory) exit(0);
cudaSetDeviceFlags(cudaDeviceMapHost);

cudaHostAlloc((void **)&a_host, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void **)&a_device, (void *)a_host, 0);
kernel<<<gridSize, blockSize>>>(a_device);
```
Concurrent kernel execution

• Some devices with compute capability 2.0 can execute multiple kernels simultaneously
 – Check for concurrentKernel property before using this

• Max number of simultaneous kernels is currently 4
Thread management on the host

• cudaError_t cudaThreadExit (void)
 – Exit and clean up from CUDA launches

• cudaError_t cudaThreadSynchronize (void)
 – Wait for compute device to finish

 kernel<<<dimGrid, dimBlock>>>(d_b, d_a);
 cudaThreadSynchronize();
GPU memory spaces

• Global memory
 – Latency is on the order of several hundred cycles

• On-chip memory
 – 2 orders of magnitude lower latency than global memory
 – Order of magnitude higher bandwidth than global memory
Device memory bandwidth

• Theoretical bandwidth
 – GTX280 example
 • Double data rate (DDR)
 • RAM frequency: 1,107 MHz
 • Memory interface: 512 bits
 • \((1,107 \times 10^6 \times (512/8) \times 2) / 10^9 = 141.6 \text{ GB/s} \)

• Effective bandwidth
 – \((\text{bytes read} + \text{bytes written}) / 10^9 / \text{time}\)
Global memory access

• Global memory resides in device memory
• Device memory is accessed via 32-, 64-, or 128-byte memory transactions
• These memory transactions must be naturally aligned
 – 32-, 64-, or 128-byte data segments should be aligned to the memory address which is a multiple of the corresponding size
• Global memory instructions support read/write word size of 1, 2, 4, 8, or 16 bytes
 – If size and alignment requirements are not fulfilled, multiple memory assess instructions will be generated
 – For structures, the size alignment requirements can be enforced by the compiler using the alignment specifiers __align__(8) or (16)
 • struct __align__(8) { float x, y };
 • struct __align__(16) { float x, y, z };

Coalesced access to global memory

- When a thread executes a global memory access instruction, memory accesses are coalesced for multiple threads into 32-, 64-, or 128-byte memory transactions
 - On devices with compute capability 1.x, global memory requests from a group of 16 threads (half-warp) are coalesced
 - On devices with compute capability 2.0, global memory requests from a group of 32 threads (warp) are coalesced
 - Threads must access the words in memory in sequence, e.g., k^{th} thread in a group of 16 threads must access k^{th} word
 - The size of the words accessed by the threads must be 4, 8, or 16 bytes
 - On devices with compute capability 2.0, global memory accesses are cached.
 - Each line in L1 or L2 caches is 128 bytes and maps to a 128-byte aligned segment in device memory
4-byte word per thread example

Figure source: NVIDIA CUDA Programming Guide ver. 3.0
4-byte word per thread example

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threads:</td>
<td>0</td>
<td>...</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compute capability:</td>
<td>1.0 and 1.1</td>
<td>1.2 and 1.3</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory transactions:</td>
<td>Uncached</td>
<td>Cached</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 32B at 128</td>
<td>1 x 64B at 128</td>
<td>1 x 128B at 128</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 32B at 160</td>
<td>1 x 64B at 192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 32B at 192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 32B at 224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure source: NVIDIA CUDA Programming Guide ver. 3.0
4-byte word per thread example

<table>
<thead>
<tr>
<th>Addresses:</th>
<th>96</th>
<th>128</th>
<th>160</th>
<th>192</th>
<th>224</th>
<th>256</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misaligned and sequential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Threads:</th>
<th>0</th>
<th>...</th>
<th>31</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Compute capability:</th>
<th>1.0 and 1.1</th>
<th>1.2 and 1.3</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory transactions:</td>
<td>Uncached</td>
<td>Cached</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 x 32B at 128</td>
<td>1 x 128B at 128</td>
<td>1 x 128B at 128</td>
</tr>
<tr>
<td></td>
<td>8 x 32B at 160</td>
<td>1 x 64B at 192</td>
<td>1 x 128B at 256</td>
</tr>
<tr>
<td></td>
<td>8 x 32B at 192</td>
<td>1 x 32B at 256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 x 32B at 224</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure source: NVIDIA CUDA Programming Guide ver. 3.0
Misaligned access

• Misalignment results in issuing multiple memory access instructions
• Example kernel

```c
__global__ void offsetCopy(float* A, float* B, int offset)
{
    long int i = blockIdx.x * blockDim.x + threadIdx.x + offset;
    A[i] = B[i];
}
```

• 2 words offset example
Effects of misaligned access

Achieved bandwidth (GB/s)

offset

GTX 280 (1.3)
GTX 480 (2.0)
Tesla T10 (1.3)
Strided access

• Strided access results in issuing multiple memory access instructions
• Example kernel

```c
__global__ void strideCopy(float* A, float* B, int stride)
{
    long int i = (blockIdx.x * blockDim.x + threadIdx.x) * stride;
    A[i] = B[i];
}
```

• Stride 2 example
Effects of strided assess

Achieved bandwidth (GB/s)

Stride

GTX 280 (1.3)
GTX 480 (2.0)
Tesla T10 (1.3)
Local memory

• Resides in the device memory
• Allocated for per-thread access
• Allocated by the compiler to hold automatic variables when there is an insufficient register space
• As slow as global memory
Constant memory

- Resides in the device memory
- Cached
- As long as all threads in a half-warp read the same value from constant cache, the read is as fast as from a register
- Access to different addresses from the same half-warp is serialized, thus cost scales linearly with the number of unique memory locations accessed

- Example to copy host memory to constant memory

 __constant__ float constData[256];
 float data[256];
 cudaMemcpyToSymbol(constData, data, sizeof(data));
Texture memory

• Resides in the device memory
• Cached
• Optimized for 2D spatial locality
 – Threads of the same warp that read texture addresses that are close together in 2D will achieve best performance
 – Addressing calculations are performed outside of the kernel by dedicated units
Shared memory

• Resides on-chip, thus much faster (~100x) than any off-chip memory
 – 16 KB per SM on pre-Fermi architecture
 – 16 or 48 KB per SM on Fermi architecture
• Divided into equally-sized memory modules (banks) that can be accessed simultaneously
 – Any memory read/write request made to n addresses that fall into n separate banks will be served simultaneously
 – If any two addresses are from the same memory bank, there is a bank conflict and the accesses will be serialized = access penalty
Shared memory

• For compute capability 1.x
 – 16 banks per SM
 – 32-bit wide banks
 – A shared memory request for a warp of threads is split into two accesses, each for a half-warp
 • Need to avoid bank conflicts in each half-warp

• For compute capability 2.0
 – 32 banks per SM on Fermi architecture
 – 32-bit wide banks
 – A shared memory request for a warp of threads is not split
 • Need to avoid bank conflicts in each warp
Register file

- 16KB per SM on compute capability 1.x
- 32 KB per SM on compute capability 2.0
- Registers are partitioned among concurrent threads scheduled on a given SM
 - Compiler and hardware scheduler are in charge of scheduling the use of registers to avoid bank conflicts
 - When not enough space in the register file, space will be allocated in the local memory for spill-over registers = expensive access
Dealing with register dependencies

• Register dependency arises when an instruction uses a result stored in a register written by an instruction before it
 – Latency is ~24 cycles

• To hide this latency, SM should be running a sufficiently large number of threads in other warps
 – At least 192 threads for compute capability 1.x
 – As many as 384 threads for compute capability 2.0
 • Registers are dual-issue on compute capability 2.0
Threads

• 32 Threads = 1 Warp
 – A warp (of threads) executes one common instruction at a time

• A “thread block” is a collection of warps that run on the same core and share a partition of local store
 – The number of warps in the thread block is configurable
 – Threads in a thread block start at the same instruction address and execute in parallel

• 32 max warps can be active per Warp Scheduler
 – 1024 threads active at once per Scheduler
 – Actual number of threads managed depends on amount of memory used per thread
Occupancy

• Ratio of the number of active warps per multiprocessor to the maximum number of possible active warps
 – Low occupancy results in inability to hide device memory access latency

• Occupancy is influenced by the number of thread blocks, number of threads per block, and by the register use
CUDA GPU Occupancy Calculator

1.) Select Compute Capability (click): 1.3

2.) Enter your resource usage:
- Threads Per Block: 256
- Registers Per Thread: 8
- Shared Memory Per Block (bytes): 2048

3.) GPU Occupancy Data is displayed here and in the graphs:
- Active Threads per Multiprocessor: 1024
- Active Warps per Multiprocessor: 32
- Active Thread Blocks per Multiprocessor: 4
- Occupancy of each Multiprocessor: 100%

Physical Limits for GPU:
- Threads / Warp: 32
- Warps / Multiprocessor: 32
- Threads / Multiprocessor: 1024
- Thread Blocks / Multiprocessor: 8
- Total # of 32-bit registers / Multiprocessor: 16384
- Register allocation unit size: 512
- Shared Memory / Multiprocessor (bytes): 16384
- Warp allocation granularity (for register allocation): 2

Allocation Per Thread Block
- Warps: 8
- Registers: 2048
- Shared Memory: 2048

These data are used in computing the occupancy data in blue.

Maximum Thread Blocks Per Multiprocessor
- Limited by Max Warps / Multiprocessor: 4
- Limited by Registers / Multiprocessor: 8
- Limited by Shared Memory / Multiprocessor: 8

Thread Block Limit Per Multiprocessor highlighted RED

CUDA Occupancy Calculator

Version: 1.5

Click Here for detailed instructions on how to use this occupancy calculator.

For more information on NVIDIA CUDA, visit http://developer.nvidia.com/cuda

Your chosen resource usage is indicated by the red triangle on the graphs.

The other data points represent the range of possible block sizes, register counts, and shared memory allocation.

Varying Block Size

<table>
<thead>
<tr>
<th>Multiprocessor</th>
<th>Warp Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>192</td>
<td>6</td>
</tr>
<tr>
<td>224</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>288</td>
<td>9</td>
</tr>
<tr>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>352</td>
<td>11</td>
</tr>
<tr>
<td>384</td>
<td>12</td>
</tr>
<tr>
<td>416</td>
<td>13</td>
</tr>
<tr>
<td>448</td>
<td>14</td>
</tr>
<tr>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>512</td>
<td>16</td>
</tr>
<tr>
<td>544</td>
<td>17</td>
</tr>
<tr>
<td>576</td>
<td>18</td>
</tr>
<tr>
<td>608</td>
<td>19</td>
</tr>
<tr>
<td>640</td>
<td>20</td>
</tr>
<tr>
<td>672</td>
<td>21</td>
</tr>
<tr>
<td>704</td>
<td>22</td>
</tr>
<tr>
<td>736</td>
<td>23</td>
</tr>
<tr>
<td>768</td>
<td>24</td>
</tr>
<tr>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>832</td>
<td>26</td>
</tr>
<tr>
<td>864</td>
<td>27</td>
</tr>
<tr>
<td>896</td>
<td>28</td>
</tr>
<tr>
<td>928</td>
<td>29</td>
</tr>
<tr>
<td>960</td>
<td>30</td>
</tr>
<tr>
<td>992</td>
<td>31</td>
</tr>
<tr>
<td>1024</td>
<td>32</td>
</tr>
</tbody>
</table>

Varying Register Count

<table>
<thead>
<tr>
<th>Multiprocessor</th>
<th>Warp Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>192</td>
<td>6</td>
</tr>
<tr>
<td>224</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>288</td>
<td>9</td>
</tr>
<tr>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>352</td>
<td>11</td>
</tr>
<tr>
<td>384</td>
<td>12</td>
</tr>
<tr>
<td>416</td>
<td>13</td>
</tr>
<tr>
<td>448</td>
<td>14</td>
</tr>
<tr>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>512</td>
<td>16</td>
</tr>
<tr>
<td>544</td>
<td>17</td>
</tr>
<tr>
<td>576</td>
<td>18</td>
</tr>
<tr>
<td>608</td>
<td>19</td>
</tr>
<tr>
<td>640</td>
<td>20</td>
</tr>
<tr>
<td>672</td>
<td>21</td>
</tr>
<tr>
<td>704</td>
<td>22</td>
</tr>
<tr>
<td>736</td>
<td>23</td>
</tr>
<tr>
<td>768</td>
<td>24</td>
</tr>
<tr>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>832</td>
<td>26</td>
</tr>
<tr>
<td>864</td>
<td>27</td>
</tr>
<tr>
<td>896</td>
<td>28</td>
</tr>
<tr>
<td>928</td>
<td>29</td>
</tr>
<tr>
<td>960</td>
<td>30</td>
</tr>
<tr>
<td>992</td>
<td>31</td>
</tr>
<tr>
<td>1024</td>
<td>32</td>
</tr>
</tbody>
</table>

Varying Shared Memory Usage

<table>
<thead>
<tr>
<th>Multiprocessor</th>
<th>Warp Occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>96</td>
<td>3</td>
</tr>
<tr>
<td>128</td>
<td>4</td>
</tr>
<tr>
<td>160</td>
<td>5</td>
</tr>
<tr>
<td>192</td>
<td>6</td>
</tr>
<tr>
<td>224</td>
<td>7</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
</tr>
<tr>
<td>288</td>
<td>9</td>
</tr>
<tr>
<td>320</td>
<td>10</td>
</tr>
<tr>
<td>352</td>
<td>11</td>
</tr>
<tr>
<td>384</td>
<td>12</td>
</tr>
<tr>
<td>416</td>
<td>13</td>
</tr>
<tr>
<td>448</td>
<td>14</td>
</tr>
<tr>
<td>480</td>
<td>15</td>
</tr>
<tr>
<td>512</td>
<td>16</td>
</tr>
<tr>
<td>544</td>
<td>17</td>
</tr>
<tr>
<td>576</td>
<td>18</td>
</tr>
<tr>
<td>608</td>
<td>19</td>
</tr>
<tr>
<td>640</td>
<td>20</td>
</tr>
<tr>
<td>672</td>
<td>21</td>
</tr>
<tr>
<td>704</td>
<td>22</td>
</tr>
<tr>
<td>736</td>
<td>23</td>
</tr>
<tr>
<td>768</td>
<td>24</td>
</tr>
<tr>
<td>800</td>
<td>25</td>
</tr>
<tr>
<td>832</td>
<td>26</td>
</tr>
<tr>
<td>864</td>
<td>27</td>
</tr>
<tr>
<td>896</td>
<td>28</td>
</tr>
<tr>
<td>928</td>
<td>29</td>
</tr>
<tr>
<td>960</td>
<td>30</td>
</tr>
<tr>
<td>992</td>
<td>31</td>
</tr>
<tr>
<td>1024</td>
<td>32</td>
</tr>
</tbody>
</table>

Copyright and License
Threads and blocks

• The number of blocks in a grid should be larger than the number of multiprocessors
 – Each multiprocessor should have at least one block to execute
 – Desirable to have multiple active blocks per multiprocessor to avoid entire multiprocessor waiting on __syncthreads()\)
 – Summary: thousands of grid blocks should be launched

• The number of threads per block should be selected to maximize the occupancy
 – 512 maximum threads per thread block
 – Occupancy also depends on the register usage as well
 – Threads per block should be a multiple of warp size
 – A minimum of 64 threads per block is desirable, but only if there are multiple concurrent blocks per SM

• Typically some experimentation is needed to find out best configuration
Threads Synchronization

- `__syncthreads()` synchronizes all threads in a thread block
 - Once all threads have reached this point, execution resumes normally
 - Used to avoid RAW / WAR / WAW hazards when accessing shared memory
- Should be used in conditional code only if the conditional is uniform across the entire thread block
Arithmetic instructions

• The hardware is designed for single precision floating point arithmetic
• Integer division and modulo operations are particularly costly -> use shift when possible
• Reciprocal square root: use rsqrtf() instead of 1.0f/sqrtf()
• Avoid automatic conversion between double and float
• Use the fast math libraries when possible, they start with prepended underscores __
Control flow

• Avoid different execution path within the same warp
 – Different execution paths in a single warp will be serialized
• Help compiler to do branch prediction
 – E.g., unroll loops with #pragma unroll
Final recommendations

• Select parallel algorithm instead of a sequential one
• Use the effective bandwidth as a measure of the optimization benefits
• Minimize data transfer between the host and device memory
• Ensure coalesced device memory access
• Minimize use of global memory
• Avoid execution path divergence
Final recommendations

- Avoid bank conflicts when accessing shared memory
- Use shared memory to avoid redundant data access to global memory
- Maintain at least 25% occupancy
- Have at least 32 threads per block
- Use fast math when possible
Porting matrix multiplier to CUDA

- cd ../tutorial/src3

- Compile & run CPU version
 icc -O3 mmult.c -o mmult
 ./mmult

```
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
1024.00 1024.00 1024.00 1024.00 1024.00 ...
...
msec = 2215478  GFLOPS = 0.969
```
int main(int argc, char* argv[]) {
 int N = 1024;

 struct timeval t1, t2, ta, tb;
 long msec1, msec2;
 float flop, mflop, gflop;

 float *a = (float *)malloc(N*N*sizeof(float));
 float *b = (float *)malloc(N*N*sizeof(float));
 float *c = (float *)malloc(N*N*sizeof(float));

 minit(a, b, c, N);

 gettimeofday(&t1, NULL);
 mmult(a, b, c, N); // a = b * c
 gettimeofday(&t2, NULL);

 mprint(a, N, 5);

 free(a);
 free(b);
 free(c);

 msec1 = t1.tv_sec * 1000000 + t1.tv_usec;
 msec2 = t2.tv_sec * 1000000 + t2.tv_usec;
 msec2 -= msec1;
 flop = N*N*N*2.0f;
 mflop = flop / msec2;
 gflop = mflop / 1000.0f;
 printf("msec = %10ld GFLOPS = %.3f
", msec2, gflop);
}

// a = b * c
void mmult(float *a, float *b, float *c, int N) {
 for (int j = 0; j < N; j++)
 for (int k = 0; k < N; k++)
 for (int i = 0; i < N; i++)
 a[i+j*N] += b[i+k*N]*c[k+j*N];
}

void minit(float *a, float *b, float *c, int N) {
 for (int j = 0; j < N; j++)
 for (int i = 0; i < N; i++) {
 a[i+N*j] = 0.0f;
 b[i+N*j] = 1.0f;
 c[i+N*j] = 1.0f;
 }
}

void mprint(float *a, int N, int M) {
 int i, j;

 for (int j = 0; j < M; j++)
 for (int i = 0; i < M; i++)
 printf("%.2f ", a[i+N*j]);
 printf("...
");
 printf("...
");
}
Matrix-matrix multiplication example (BLAS SGEMM)

```cpp
for (i = 0; i < n; ++i)
    for (j = 0; j < m; ++j)
        for (k = 0; k < p; ++k)
            a[i+n*j] += b[i+n*k] * c[k+p*j];
```

- Matrices are stored in column-major order

- For reference, jki-ordered version runs at 1.7 GFLOPS on 3 GHz Intel Xeon (single core)
for (i = 0; i < n; ++i)
for (j = 0; j < m; ++j)
for (k = 0; k < p; ++k)
 \(a[i+n*j] += b[i+n*k] * c[k+p*j];\)
Strip-mined the stride-1 i loop to SIMD width of 32

```c
for (is = 0; is < n; is+=32)

    for (i = is; i < is+32; ++i)
        for (j = 0; j < m; ++j)
            for (k = 0; k < p; ++k)
                a[i+n*j] += b[i+n*k] * c[k+p*j];

for (i = 0; i < n; ++i)

    for (j = 0; j < m; ++j)
        for (k = 0; k < p; ++k)
            a[i+n*j] += b[i+n*k] * c[k+p*j];
```
Run the i element as a thread block and the is strip loop and j loop in parallel

```plaintext
for (is = 0; i < n; is+=32)  
  for (i = is; i < is+32; ++i)  
    for (j = 0; j < m; ++j)  
      for (k = 0; k < p; ++k)  
        a[i+n*j] += b[i+n*k] * c[k+p*j];
```

```plaintext
parfor (is = 0; i < n; is+=32)  
  parfor (j = 0; j < m; ++j)  
    SIMDfor (i = is; i < is+32; ++i)  
      for (k = 0; k < p; ++k)  
        a[i+n*j] += b[i+n*k] * c[k+p*j];
```
Parallel (grid) loops and SIMD (thread block) loop are handled implicitly by the GPU hardware

```
parfor (is = 0; i < n; is+=32)
parfor (j = 0; j < m; ++j)
    SIMDfor (i = is; i < is+32; ++i)
        for (k = 0; k < p; ++k)
            a[i+n*j] += b[i+n*k] * c[k+p*j];
```

```
extern "C" __global__ void mmkernel (float* a, float* b, float* c, int n, int m, int p)
{
    int i = blockIdx.x*32 + threadIdx.x;
    int j = blockIdx.y;
    float sum = 0.0f;
    for (int k = 0; k < p; ++k)  sum += b[i+n*k] * c[k+p*j];
    a[i+n*j] = sum;
}
```
dim3 threads (32);
dim3 grid(4096/32, 4096);

128x4096 grid of thread blocks

Block of 32x1x1 threads

(blockIdx.x, blockIdx.y)

(threadIdx.x)

{ int i = blockIdx.x*32 + threadIdx.x;
 int j = blockIdx.y;
 float sum = 0.0f;
 for (int k = 0; k < p; ++k)
 sum += b[i+n*k] * c[k+p*j];
 a[i+n*j] = sum;
}
Version 1

```c
int i = blockIdx.x*32 + threadIdx.x;
int j = blockIdx.y;
float sum = 0.0f;
for (int k = 0; k < p; ++k)
    sum += b[i+n*k] * c[k+p*j];
a[i+n*j] = sum;
```

```
[kindr@ac31 src5]$ ./mmult_gpu

matrix 4096x4096
grid 128x4096
block 32x1x1

msec = 5779620  GFLOPS = 23.780
```
Version 1

<table>
<thead>
<tr>
<th>Threads per block (SIMD width)</th>
<th>Grid size</th>
<th>performance (GFLOPS)</th>
<th>Overall</th>
<th>kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>128x4096</td>
<td>23.3</td>
<td>24.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>One warp per thread block. Thus, at most only 8 thread blocks are active on each multiprocessor, out of 32 max.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>64x4096</td>
<td>26.0</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If 8 thread blocks are scheduled on each multiprocessor, we get up to 16 warps, so the multithreading is more efficient.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>32x4096</td>
<td>24.5</td>
<td>25.3</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>16x4096</td>
<td>24.9</td>
<td>25.9</td>
<td></td>
</tr>
</tbody>
</table>
Strip-mine k loop and load a strip of c into the multiprocessor local memory

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (k = 0; k < p; ++k)
 a[i+n*j] += b[i+n*k] * c[k+p*j];

parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];
int tx = threadIdx.x; int i = blockIdx.x*32 + tx; int j = blockIdx.y;
__shared__ float cb[32];
float sum = 0.0f;
for (int ks = 0; ks < p; ks += 32) {
 cb[tx] = c[ks+tx+p*j];
 for (int k = ks; k < ks+32; ++k) sum += b[i+n*k] * cb[k-ks];
}
a[i+n*j] = sum;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 128x4096
block 32x1x1

msec = 4538683 GFLOPS = 30.282
Version 2

<table>
<thead>
<tr>
<th>Threads per block (SIMD width)</th>
<th>Grid size</th>
<th>performance (GFLOPS)</th>
<th>Overall</th>
<th>kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>128x4096</td>
<td>28.5</td>
<td>29.8</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>64x4096</td>
<td>40.4</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>32x4096</td>
<td>40.5</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>16x4096</td>
<td>41.2</td>
<td>44.0</td>
<td></td>
</tr>
</tbody>
</table>
Each kernel instance computes 2 values of the i loop

\begin{verbatim}
parfor (is = 0; i < n; is+=32)
 parfor (j = 0; j < m; ++j)
 SIMDfor (i = is; i < is+32; ++i)
 for (ks=0; ks<p; ks+=32)
 cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];
 for (k = ks; k < ks+32; ++k)
 a[i+n*j] += b[i+n*k] * cb[k-ks];
 a[i+32+n*j] += b[i+32+n*k] * cb[k-ks];
\end{verbatim}
int tx = threadIdx.x; int i = blockIdx.x*64 + tx; int j = blockIdx.y;
__shared__ float cb[32];
float sum0 = 0.0f, sum1 = 0.0f;
for (int ks = 0; ks < p; ks += 32) {
 cb[tx] = c[ks+tx+p*j];
 __syncthreads();
 for (int k = ks; k < ks+32; ++k) { sum0 += b[i+n*k] * cb[k-ks]; sum1 += b[i+32+n*k] * cb[k-ks]; }
 __syncthreads();
}
a[i+n*j] = sum0;
a[i+32+n*j] = sum1;

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 64x4096
block 32x1x1

msec = 3182941 GFLOPS = 43.180
Version 3

Grid Size Performance (GFLOPS)

<table>
<thead>
<tr>
<th>Threads per block (SIMD width)</th>
<th>Grid size</th>
<th>performance (GFLOPS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grid size</td>
<td>overall</td>
<td>kernel</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>64x4096</td>
<td>40.4</td>
<td>43.1</td>
</tr>
<tr>
<td>64</td>
<td>32x4096</td>
<td>40.7</td>
<td>43.4</td>
</tr>
<tr>
<td>128</td>
<td>16x4096</td>
<td>40.8</td>
<td>43.6</td>
</tr>
<tr>
<td>x4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>32x4096</td>
<td>40.8</td>
<td>43.4</td>
</tr>
<tr>
<td>64</td>
<td>16x4096</td>
<td>40.9</td>
<td>43.6</td>
</tr>
<tr>
<td>128</td>
<td>8x4096</td>
<td>39.6</td>
<td>42.1</td>
</tr>
</tbody>
</table>
Each kernel instance computes 2 values of the j loop

```
parfor (is = 0; i < n; is+=32)
  parfor (j = 0; j < m; ++j)
    SIMDfor (i = is; i < is+32; ++i)
      for (ks=0; ks<p; ks+=32)
        cb[ks:ks+31]=c[ks+p*j:ks+31+p*j];
        for (k = ks; k < ks+32; ++k)
          a[i+n*j] += b[i+n*k] * cb[k-ks];
```

```
parfor (is = 0; i < n; is+=32)
  parfor (j = 0; j < m; j+=2)
    SIMDfor (i = is; i < is+32; ++i)
      for (ks=0; ks<p; ks+=32)
        cb0[ks:ks+31]=c[ks+p*j:ks+31+p*j];
        cb1[ks:ks+31]=c[ks+p*(j+1):ks+31+p*(j+1)];
        for (k = ks; k < ks+32; ++k)
          a[i+n*j] += b[i+n*k] * cb0[k-ks];
          a[i+32+n*(j+1)] += b[i+32+n*k] * cb1[k-ks];
```
```c
int tx = threadIdx.x;  int i = blockIdx.x*32 + tx;  int j = blockIdx.y*2;
__shared__ float cb0[32], cb1[32];
float sum0 = 0.0f, sum1 = 0.0f;
for (int ks = 0; ks < p; ks += 32) {
    cb0[tx] = c[ks+tx+p*j];
    cb1[tx] = c[ks+tx+p*(j+1)];
    __syncthreads();
    for (int k = ks; k < ks+32; ++k) { float rb = b[i+n*k];  sum0 += rb * cb0[k-ks];  sum1 += rb * cb1[k-ks];  }
    __syncthreads();
}
a[i+n*j] = sum0;
a[i+n*(j+1)] = sum1;
```

[kindr@ac31 src5]$./mmult_gpu

matrix 4096x4096
grid 128x2048
block 32x1x1

msec = 2335358 GFLOPS = 58.851
Version 4

<table>
<thead>
<tr>
<th>Threads per block (SIMD width)</th>
<th>Grid size</th>
<th>performance (GFLOPS)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>overall</td>
<td>kernel</td>
</tr>
<tr>
<td>x2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>128x2048</td>
<td>52.7</td>
<td>57.3</td>
</tr>
<tr>
<td>64</td>
<td>64x2048</td>
<td>75.2</td>
<td>84.8</td>
</tr>
<tr>
<td>128</td>
<td>32x2048</td>
<td>76.2</td>
<td>86.3</td>
</tr>
<tr>
<td>x4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>128x1024</td>
<td>92.3</td>
<td>107.4</td>
</tr>
<tr>
<td>64</td>
<td>64x1024</td>
<td>131.3</td>
<td>163.8</td>
</tr>
<tr>
<td>128</td>
<td>32x1024</td>
<td>134.6</td>
<td>169.1</td>
</tr>
</tbody>
</table>
Bottom line

• It is easy enough to get something to run on a GPU
• But it is difficult to get it to run fast
 – Things to consider
 • which algorithm to use; some algorithms are better suited for GPUs than others
 • understand if the kernel is compute-bound or memory bandwidth bound and optimize it accordingly