
ECE 190 Lecture 04 January 27, 2011

 1 V. Kindratenko

Operators and control structures in C

Lecture Topics
 Operators

 Conditional constructs

 Example

Lecture materials
Textbook § 12.3., 12.4, 13.1, 13.2

Homework
None

Machine problem
MP1.1 due February 2 at 5pm submitted electronically

ECE 190 Lecture 04 January 27, 2011

 2 V. Kindratenko

Operators
 Operators are the language’s mechanisms for manipulating values

o Example: z = x * y;

 Expression x * y is evaluated and

 the resulting value is assigned to variable z

 three things to know about operators:

o function – what it does

o precedence – in which order are operators combined

o associativity – in which order operators of the same precedence are executed

Assignment operator
 = is the assignment operator

o The value on the right of the assignment operator will be assigned to the variable whose

name is provided on the left side of the operator

 The value actually will be copied to the memory associated with the variable

name on the left of the assignment operator

o Example: a = b + c;

 If the type of the value on the right of the assignment operator is not the same as the type of

the variable on the left of the assignment operator, data type conversion will take place

 Example:

o int x, a;

double y, z;

z = x + y; <- value of x will be converted to double type before the expression

is evaluated

a = x + y; <- once evaluated, the sum will be converted to int type before

assigning it to variable a

Arithmetic operators
 Defined for int, float, and char data types

 *, +, -, /, % (modulus)

 Precedence: *, /, % are executed first, followed by + and –

o 2+3x4 = 2+(3x4)

 Associativity: operators with the same precedence are executed sequentially

o 2+3-4+5=((2+3)-4)+5

 Parenthesis can be used to override the evaluation order

 While floating-point addition and multiplication are both commutative (a + b = b + a and

a*b = b*a), they are not necessarily associative. That is, (a + b) + c is not necessarily equal to a +

(b + c).

(Post/pre-) in-/de-crement
 Borrowed from assembly

 ++, --

ECE 190 Lecture 04 January 27, 2011

 3 V. Kindratenko

 Examples

o x = 4; y = x++; /* post increment: y = 4, x = 5 */

o z = ++x; /* pre-increment: z = 6, x = 6 */

Bitwise operators
 normally used with unsigned int and unsigned char data types, they really just manipulate bits

without regards to the numerical value/meaning

 ~ bitwise NOT: ~x

 & bitwise AND: y & x

 | bitwise OR: x | y

 ^ bitwise XOR: x ^ y

 << left shift: x << y (for positive int same as x*2y)

 >> right shift: x >> y (for positive int same as x/2y)

 Examples

o h = f & g;

o h = g << 4;

o h = ~f | ~g;

Relational operators
 > less

 >= less or equal

 < more

 <= more or equal

 == equal

 != not equal

 Examples

o q = (321 == 83); /*q = 0 */

o q = (x == y); /* q is one if x == y, otherwise it is 0 */

o h = f <= g; /* h is 1 when f is less of equal g */

Logical operators
 value of 0 is referred to as logically false

 value of ~0 is referred to as logically true

 ! - logical NOT

 && logical AND

 || logical OR

 Example: y = (10 <= x) && (x <= 20) /* true if 10 <=x<=20, otherwise false */

Expressions with multiple operators
 Example: y = x & z + 3 || 9 – w % 6;

 Applying operators precedence rules, this is equal to

o y = (x & (z + 3)) || (9 – (w%6));

ECE 190 Lecture 04 January 27, 2011

 4 V. Kindratenko

 Table 12.5 from the textbook lists operators precedence sequence

 To be sure the code does what you want it to do, just use parenthesis!

Special operator: conditional

 x = y ? z : t;

 if y is TRUE, x = z, otherwise, x = t

o works like a MUX

 example: x = (y > 0) ? y : -y; /* x = |y| */

Compound-assignment operators
 var1 operator= var2; in C is the same as var1 = var1 operator var2;

 += addition assignment, a += b same as a = a + b

 -= subtraction assignment

 *= multiplication assignment

 /= b division assignment

 %= b modulo assignment

 &= b bitwise AND assignment

 |= b bitwise OR assignment

 ^= b bitwise XOR assignment

 <<= b bitwise left shift assignment

 >>= b bitwise right shift assignment

Conditional constructs
 There are three basic programing constructs: sequential, conditional, iterative

 Sequential construct means that C program instructions (statements) are executed sequentially,

one after another:

 Conditional construct means that one or another statement will be executed, but not both,

depending on some condition:

Statement 1

Statement 2

Statement 3

ECE 190 Lecture 04 January 27, 2011

 5 V. Kindratenko

 In C, conditional constructs can be implemented using if, if-else, or switch statements

if statement

 if (condition)

 action;

 examples

o if (x < 0)

 x = -x; /* simple statement */

o if (x > 5 && x< 25) {

 y = x * x +5; /* compound statement */

 printf(“y=%d\n”, y);

}

 action statement can be simple, as in fist example, or compound, as in second example

if-else statement

 if (condition)

 action_when_condition_is_true;

else

 action_when_condition_is_false;

Statement 1 Statement 2

Test
condition

action

condition

true

false

ECE 190 Lecture 04 January 27, 2011

 6 V. Kindratenko

 examples

o if (x < 0)

 x = -x;

else

 x = x * 2;

o if (x > 5 && x< 25) {

 y = x * x +5;

 printf(“y=%d\n”, y);

}

else

 printf(“x=%f\n”, x);

 associating ifs with elses

o in a cascaded if-else statement, an else is associated with the closest if

 that is, when not using braces, which is not a good practice

if (x != 0)

 if (y > 3)

 z = z / 2;

 else

 z = z + 2;

same as

if (x != 0) {

 if (y > 3)

 z = z / 2;

 else

 z = z + 2;

}

o if we really want to associate else with the first if, then we should use braces:

 if (x != 0) {

 if (y > 3)

 z = z / 2;

}

else

 z = z + 2;

o use braces to write clear and readable code!

 common programming errors

o if (x = 2) using assignment operator instead of ==

action 1

condition
true false

action 2

ECE 190 Lecture 04 January 27, 2011

 7 V. Kindratenko

Example

Computing solution of a quadratic equation ax2+bx+c=0

 Algorithm:

o D = b2 – 4ac

o If D equals 0, there is one real root: x = -b/(2a)

o If D is positive, there are two roots: x1,2= (-b±√D)/(2a)

o If D is negative, no real roots exist

 Problem decomposition into separate steps using a flowchart

o Get input

o Compute solution according to the above algorithm

o Print output

 Once we have the problem decomposed into individual steps, translating it into C is

straightforward:

/* solution of the quadratic equation ax^2+bx+c=0

 */

#include <stdio.h> /* needed for printf and scanf */

#include <math.h> /* needed for sqrtf */

int main()

start

stop

Get input
(a, b, c)

Output

roots x1,2

Compute

solution

Compute D

D=b
2
-4ac

D>0

x1,2=(-b±√D)/(2a) D==0

x=-b/(2a)

ECE 190 Lecture 04 January 27, 2011

 8 V. Kindratenko

{

 float a, b, c; /* quadratic equation coefficients */

 float D; /* determinant */

 float x1, x2; /* solution(s) */

 /* get equation coefficients */

 printf("Enter a, b, and c: ");

 scanf("%f %f %f", &a, &b, &c);

 printf("Solving equation %fx^2+%fx+%f=0\n", a, b, c);

 /* compute solution */

 D = b * b - 4 * a * c; /* compute determinant */

 if (D > 0) /* two real roots exist */

 {

 x1 = (-b + sqrtf(D)) / (2 * a);

 x2 = (-b - sqrtf(D)) / (2 * a);

 }

 else if (D == 0) /* only one root exists */

 x1 = -b / (2 * a);

 /* print results */

 if (D > 0)

 printf("x1=%f, x2=%f\n", x1, x2);

 else if (D == 0)

 printf("x=%f\n", x1);

 else

 printf("No real roots exist\n");

 return 0;

}

 To compile, we will need to link the code with additional library (libm.a) using -lm compiler flag

 Examples:

o x2+2x -8=0: x1 = 2, x2 = -4

o x2-10x+25=0: x = 5

o 5x2-2x+2=0: no real roots

