Current Awardee

High-Performance, Multi-Objective, and Multi-Physics Design Optimization of Next-Generation, Patient-Specific Implant Scaffold at Scale

X. Shelly Zhang
X. Shelly Zhang

College: Grainger College of Engineering
Award year: 2019-2020
NCSA collaborators: Erman Guleryuz

With recent advances in tissue engineering, the design and fabrication of implant scaffolds have become emerging areas of research, as the traditional implants fail to fulfill required functionalities for specific patients. While topology optimization offers a promising method for scaffold design, existing studies have limited capabilities of addressing multiple design scenarios and fine control of the porosities to achieve highest performances. To address these challenges, the proposed research aims to create a high-performance, multi-physics, and multi-objective topology optimization framework for the design of next-generation patient-specific scaffolds implant scaffold with enhanced multifunctionality. The proposed formulation addresses both mechanical and mass transport design requirements using multi-objective formulations and simultaneously controls the location, size, and shape of porosities through local constraints. To successfully realize the high complexity of the scaffold structures, the proposed research requires large problem size (hundreds of millions of degrees of freedom) and 3D multi-physics simulations, which must rely on massively parallel supercomputers. The PI will work closely with NCSA to develop highly scalable algorithms and high-performance computational frameworks for efficient optimization and to utilize the large-scale supercomputers in order to achieve ultra-high-resolution designs.

The proposed work will be built upon an open-source parallel code based on PETSc suite of libraries. Through a proof-of-concept benchmark on Blue Waters, the workflow was successfully tested and showed great scalability. The supercomputing infrastructure and domain experts at NCSA will provide essential support for the success of this project. The state-of-the-art methods created in this research will carry a great potential to contribute to the synergy between NCSA and the members of NCSA's Industry Program from the life sciences sector. With the optimized structures developed through this project, patients implanted with the optimized scaffolds would be benefited from better functionality, better clinical results, and ultimately contribute to better health and living conditions.