Unsupervised Learning of Particle Image Velocimetry

ISC 2020 Digital

Mingrui Zhang, Matthew Piggott
Imperial College London
Unsupervised Learning of Particle Image Velocimetry

ISC 2020 Digital
Mingrui Zhang, Matthew Piggott
Imperial College London
Outline

• Particle Image Velocimetry (PIV)
 From traditional method to deep learning method

• Unsupervised learning of PIV
 Our unsupervised learning method of PIV

• Results
 Comparisons with traditional PIV and supervised learning method
 Test on real experimental data

• More results
Particle Image Velocimetry
Introduction

Particle Image Velocimetry (PIV) is one of the most popular measurement techniques in experimental fluid dynamics.
Traditional Methods

• **Cross-correlation method**

Calculates a displacement by searching for the maximum cross-correlation between two interrogation windows from an image pair.

- Relatively Efficient
- Easy to implement
- Spatially sparse
- Requires post-processing
Traditional Methods

• **Optical flow method**
 Treats the PIV problem through the solution of an **optimisation problem**, seeking the minimisation of an objective function.

- Dense output
- Time consuming
Deep learning methods

• From optical flow to fluid flow

FlowNet

Deep learning methods

• Supervised learning – PIV

Basic idea: Train network using data with known velocity field
(Typically synthetic data e.g. simulation results)

Several network architectures have been researched:
PIV-DCNN, PIV-FlowNet, PIV-LiteFlowNet etc.

S. Cai, J. Liang, Q. Gao, C. Xu, R. Wei.: Particle image velocimetry based on a deep learning motion estimator. IEEE Transactions on Instrumentation and Measurement (2019b)
Challenges

• Insufficient data
There is no easily available ground truth data in real world scenarios.

• Domain mismatch

Can we go further?
Unsupervised learning of PIV
Loss function

• Unsupervised learning vs Supervised learning

How to design the loss function?
Loss function

- Photometric loss

\[L_P(I_1, I_2, F^f, F^b) = \sum_{x \in P} \rho \left(I_1(x) - I_2(x + F^f(x)) \right) + \rho \left(I_2(x) - I_1(x + F^b(x)) \right) \]

\[\rho: \text{Generalized Charbonnier penalty function} \]

D. Sun, et al. IJCV (2014)

Loss function

- Smoothness loss

\[L_s(F^f, F^b) = \sum_{(s,r) \in N(x)} \sum_{x \in P} \rho \left(F^f(s) - 2F^f(x) + F^f(r) \right) + \rho \left(F^b(s) - 2F^b(x) + F^b(r) \right) \]
Loss function

• Consistency loss

\[L_C(F^f, F^b) = \sum_{x \in P} \rho \left(F^f + F^b(x + F^f) \right) + \rho \left(F^b + F^f(x + F^b) \right) \]
Loss function

• Final integrated loss

\[
L(I_1, I_2, F^f, F^b) = \lambda_D L_D + \lambda_S L_S + \lambda_C L_C
\]
Network Architecture

• LiteFlowNet architecture

Main Features

1. Compact model size (compared to FlowNet)
2. Feature warping module (Address large displacement)

Final Pipeline

UnLiteFlowNet-PIV
Training details

• **Data:** 15,050 particle image pairs (half was used in training)

PIV dataset
 Shengze Cai, Shichao Zhou, Chao Xu, Qi Gao. Dense motion estimation of particle images via a convolutional neural network, Exp Fluids, 2019

• **Training iterations:** 40,000 iterations with a batch size of 8

• **Ensemble loss strategy of multi resolution outputs is applied**

\[L_T = \sum_i w_i L_i \]
Results
Metrics

• Average Endpoint Error (AEE)

Averaged Euclidean norm of differences between estimated flow and ground truth flow matrix

\[\text{AEE} = \| \mathbf{F}^e - \mathbf{F}^g \|_2 \]
Comparison

<table>
<thead>
<tr>
<th>Methods</th>
<th>Back-Step</th>
<th>Cylinder</th>
<th>JHTDB channel</th>
<th>DNS turbulence</th>
<th>SQG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>train</td>
<td>test</td>
<td>train</td>
<td>test</td>
<td>train</td>
</tr>
<tr>
<td>WIDIM [12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS optical flow [12]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIV-NetS-noRef [11]</td>
<td>13.6</td>
<td>13.9</td>
<td>19.8</td>
<td>19.4</td>
<td>50.6</td>
</tr>
<tr>
<td>PIV-NetS [11]</td>
<td>5.8</td>
<td>5.9</td>
<td>6.9</td>
<td>7.2</td>
<td>27.1</td>
</tr>
<tr>
<td>PIV-LiteFlowNet [12]</td>
<td>5.5</td>
<td>5.6</td>
<td>8.7</td>
<td>8.3</td>
<td>18.8</td>
</tr>
<tr>
<td>PIV-LiteFlowNet-en [12]</td>
<td>3.2</td>
<td>3.3</td>
<td>5.2</td>
<td>4.9</td>
<td>11.6</td>
</tr>
<tr>
<td>UnLiteFlowNet-PIV</td>
<td></td>
<td>10.1</td>
<td>7.8</td>
<td>9.6</td>
<td>13.5</td>
</tr>
</tbody>
</table>

(The error unit is set to pixel per 100 pixels for easier comparison)

S. Cai, J. Liang, Q. Gao, C. Xu, R. Wei.: Particle image velocimetry based on a deep learning motion estimator. IEEE Transactions on Instrumentation and Measurement (2019b)
Results

Flow past a backward facing step

Sea Surface Flow (Driven by SQG)
Results

Flow past a circular cylinder

Error (white = zero)
Results

Sea Surface Flow (Driven by SQG)

Error (white = zero)
Real Experimental data

Time-resolved Jet Flow
(Experimental data, no ground truth)

Data source: https://www.pivchallenge.org/pub05/index.html#c
Real Experimental data

Time-resolved Jet Flow
(Experimental data, no ground truth)

Inputs

UnLiteFlowNet-PIV
(Our unsupervised method,
Trained by full integrated loss)

PIV-LiteFlowNet
(Supervised method)

Data source: https://www.pivchallenge.org/pub05/index.html#c
Conclusions

• **Competitive results**
 Competitive results compared with classical PIV methods as well as existing supervised learning based methods

• **Potential generalization ability**
 Potential to generalize to complex real-world flow scenarios where ground truth is effectively unknowable

Project page with open source codes: https://github.com/erizmr/UnLiteFlowNet-PIV

Contact: mingrui.zhang18@imperial.ac.uk
More Results
JHTDB
Isotropic turbulence
JHTDB
DNS turbulence
JHTDB Channel

Ground truth flow

UnLiteFlowNet

PIV-LiteFlowNet

Input images overlay

AEE : 8.4

AEE : 8.8
Thank you!
Follow us on Twitter at #ISC20!