Distributed Deep Learning on the HAL System

Benjamin Rabe, NCSA
What are the benefits of distributed training?

- **Acceleration of the training process**
 - Faster training equates to less wasted developer time in the \{training, evaluating, hyperparameter tuning\} development cycle.

- **Making the most of available GPU memory**
 - Data parallelism allows for tradeoff between local batch size and number of workers, and model parallelism allows for models to exceed the memory capacity of a single GPU.

- **Decreased reliance on hardware capability**
 - Scaling out rather than up can allow high performance even on systems without cutting-edge hardware.

- **Future-proofing**
 - Network architectures and datasets will continue to grow in complexity and scale.
What types of distributed training exist?

- Data vs model parallelism

- Synchronous vs asynchronous training

Focus of this talk is data parallel, synchronous training. However, resources on other types will be provided.

Image source: https://xiandong79.github.io/Intro-Distributed-Deep-Learning
How / why / when does data parallel training work?

● Gradient descent overview
 ○ Gradient descent (1)
 ○ Minibatch SGD (2)
 ○ Distributed minibatch SGD (3)

● Core idea: network is replicated on each worker, gradients are shared through an all-reduce.

● Train steps of single-worker and distributed training are identical provided global batch size (kn) is constant (e.g. 1x128 vs 4x32) and losses for each example are independent.
 ○ Important exception: batch normalization layers break independence of example losses. This doesn’t necessarily mean performance will be worse, but it makes local batch size a network hyperparameter.

● Weights on each worker are identical during sync training (relevant for weight decay computation).

\[
\begin{align*}
 w_{t+1} &= w_t - \eta \nabla L(w_t) \\
 w_{t+1} &= w_t - \eta \frac{1}{n} \sum_{x \in B} \nabla l(x, w_t) \\
 w_{t+1} &= w_t - \eta \frac{1}{kn} \sum_{j<k} \sum_{x \in B_j} \nabla l(x, w_t)
\end{align*}
\]
Will your application benefit from distributed training?

- A training application won’t always get linear speedup by adding hardware
 - Bottlenecks may arise in computation other than backward propagation including:
 - File I/O for input pipeline
 - Input preprocessing
 - All-reduce of gradients at the end of each step

- A toy example illustrating scaling with number of devices (num gpus = g)
 - For MNIST, global batch size kept constant at 20.
 For ImageNet, global batch size kept constant at 128.
 - Table shows rate in img/sec
 - Tracing profile of MNIST with g = 4, pink NcclAllReduce op dominates timing:

<table>
<thead>
<tr>
<th></th>
<th>g = 1</th>
<th>g = 2</th>
<th>g = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST - 1 hidden layer (95 units) FCN</td>
<td>12700</td>
<td>10264</td>
<td>7146</td>
</tr>
<tr>
<td>ImageNet - ResNet 50</td>
<td>365</td>
<td>680</td>
<td>1148</td>
</tr>
</tbody>
</table>
Native framework support for distributed training on HAL

- **TensorFlow (tf.Estimator API)**
 - Info on data-parallel training: https://www.tensorflow.org/guide/distribute_strategy
 - Current support (1.13): replicated training on single worker (1-4 GPUs on HAL) and parameter server asynchronous training on multiple workers
 - Support for multi-node replicated training is currently experimental (~2.0)
 - Model parallelism only supported through custom device placement or Mesh TensorFlow
 - https://github.com/tensorflow/mesh

- **PyTorch**
 - Supports distributed synchronous training on multiple workers
 - See `torch.nn.DataParallel` and `torch.nn.parallel.DistributedDataParallel`
 - More sophisticated support for model parallelism, and model parallelism is compatible with `DistributedDataParallel`
 - https://pytorch.org/tutorials/intermediate/model_parallel_tutorial.html
Other distributed training frameworks available on HAL

- **Horovod**
 - Supports TensorFlow, Keras, PyTorch, and MXNet
 - Pre-dates native TensorFlow support for synchronous replicated training

- **IBM WML-CE (PowerAI)**
 - **ddlrun**
 - Supports data parallel training in TensorFlow, PyTorch, and Caffe
 - TensorFlow Large Model Support
 - Allows training of models too large to fit in single GPU memory by swapping tensors back and forth from host

- **More information on both can be found on the wiki**
 - https://wiki.ncsa.illinois.edu/display/ISL20/Multi-node+distributed+training
 - Information subject to change, as it is tied to IBM’s WML-CE release schedule
Resources and examples

- Distributed MNIST example from previous slide
 - https://github.com/bendrabe/ddl_training/blob/master/mnist/mnist.py

- Two more examples of tf.Estimator distributed training applications can be found in above GitHub repo
 - SVHN: straightforward pure CNN + dropout for Street View House Number dataset
 - SqueezeNet: TensorFlow port of SqueezeNet 1.0 for ImageNet classification task

- Insightful paper that covers subtleties of large-scale distributed training and suggests general guidelines for adaptation of concepts to other DL tasks

- TensorFlow debugger
 - Documentation: https://www.tensorflow.org/guide/debugger
 - Demo will be debugging NaN bug in SqueezeNet implementation in repo
 - https://github.com/tensorflow/models/blob/497989e0705abc2d7069b3ffde6a42a11929e500/research/slim/train_image_classifier.py#L187