Sequence Models and HAL Deep Learning Cluster

Presented By: Aaron D. Saxton, PhD
Get Setup!

> ssh hal

hal> git clone https://git.ncsa.illinois.edu/saxton/hal-training-sequence-modeling.git

On Firefox or Chrome log onto,

https://hal.ncsa.illinois.edu:8888

https://xkcd.com/2265/

YOU MAY CLAIM UP TO 10% OF DEFENDANTS ON YOUR SEITAN LOCAL INCOME TAX FOR FISCAL YEAR 20202 BY TAKING THE STANDARD DEDUCTION AND ATOMIZING YOUR CLAIMS.

I USED A NEURAL NET TO PREPARE MY TAX RETURNS, BUT I THINK I CUT OFF ITS TRAINING TOO EARLY.
Sequence Modeling

- **Autoregression**
 \[X_t = c + \sum_{i=1}^{p} \phi_i B^i X_t + \epsilon_t \]
 Back Shift Operation: \(B^i \)
- **Autocorrelation**
 \[R_{XX}(t_1, t_2) = E[X_{t_1} X_{t_2}] \]
- **Other tasks**
 - **Semantic Labeling**

The quick red fox jumps over the lazy brown dog
Sequence Modeling

• Sequence 2 Sequence models
 • Continuing a Sequence of Number
 Sequence 1: 1, 2, 4, 8
 Sequence 2: 16, 32, 64, 128
 • Generating a Text Response
 Sequence 1: Did you hear that Gary won the contract? That’s going to be a lot of work.
 Sequence 2: You’re right, but it will be an exciting project.
Recurrent Neural Networks: Sequence Model

Input Is: \(\{x_0, x_1, x_2, \ldots, x_N\} \)
Activation Function: \(\sigma(x) \)
State At Step \(t \): \(h_t \)
Hidden Input Weights: \(U \)
Hidden output Weights: \(V \)
Hidden State Step Weights: \(W \)

\[
h_t = \sigma(U \cdot x_t + W \cdot h_{t-1})
\]

\[
y_t = \text{Softmax}(V \cdot h_t)
\]
Recurrent Neural Networks: Sequence Model

- Continuing the sequence 1, 2, 4, 8

- A sample from the training set would look like

 Input: {1, 2, 4, 8, 16, 32, 64, 128}

 Output: {16, 32, 64, 128, 256}

- Loss function could be

 $$R = \sum_{i=4}^{6} (x_i - \tilde{y}_{i-1})^2$$
Gradient Decent

- Searching for minimum

\[\nabla R = \left\langle R_{\theta_0}, R_{\theta_2}, \ldots, R_{\theta_n} \right\rangle \]

\[R(\vec{\theta}_{t+1}) = R(\vec{\theta}_t + \gamma \nabla R) \]

- \(\gamma \): Learning Rate
- Recall, Loss depends on data

Expand notation,

\[R(\vec{\theta}_t; \{ (x_i, y_i) \}_{i=1}^{n}) \]

- Recall \(R \) and \(\nabla R \) is a sum over \(i \)
- Want \(R \) with ALL DATA ?

\[R = \sum_{i=1}^{n} [(y_i - f_{\theta_0}(x_i))^2] \]
Stochastic Gradient Decent

- Recall R is a sum over i ($R = \sum_{i=1}^{n} [(y_i - f_{\theta_t}(x_i))^2]$)
- Single training example, (x_i, y_i), Sum over only one training example
 \[\nabla R(x_i, y_i) = \left\langle R_{\theta_0}, R_{\theta_2}, \ldots, R_{\theta_n} \right\rangle_{(x_i, y_i)} \]
 \[R(x_i, y_i)(\vec{\theta}_{t+1}) = R(x_i, y_i)(\vec{\theta}_t + \gamma \nabla R(x_i, y_i)) \]
- γ: Learning Rate
- Computing R involved composing W, x_t, h_t into h_{t+1}, x_{t+1} to get \tilde{y}_{t+1}
- Therefore ∇R requires the entire RNN to be “Unrolled”
- RNN can be though of as super deep NN, as deep as your sequence

\[h_t = \sigma(U \cdot x + W \cdot h_{t-1}) \]
\[y_t = \text{Softmax} (V \cdot h_t) \]
Demo
LSTM: Sequence Model

- Input Is: \(\{x_0, x_1, x_2, \ldots, x_N\} \)
- Activation Function: \(\sigma(x) \)
- "Dense Layer": \(nn(x) \)
- \(f_t = nn(W_f \cdot [y_{t-1}, x_t] + b_f) \), Forget Gate
- \(i_t = nn(W_i \cdot [y_{t-1}, x_t] + b_i) \), Input Gate
- \(\tilde{C}_t = \sigma(W_C \cdot [y_{t-1}, x_t] + b_C) \)
- \(o_t = nn(W_o \cdot [y_{t-1}, x_t] + b_o) \), Output Gate
- \(C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \)
- \(y_t = o_t \cdot \sigma(C_t) \)
- Note: \(\cdot \) is point wise multiplication
- Note: \([y_{t-1}, x_t] \) is concatenation
LSTM: Sequence Model

- ChapBot Data, Movie Dialog
 - lines

 L1045 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ They do not!
 L1044 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ They do to!
 L985 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ I hope so.
 m0 +++$+++ CAMERON +++$+++ She okay?
 L925 +++$+++ u0 +++$+++ m0 +++$+++ BIANCA +++$+++ Let's go.
 L924 +++$+++ u2 +++$+++ m0 +++$+++ CAMERON +++$+++ Wow

- conversations

 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L194', 'L195', 'L196', 'L197']
 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L198', 'L199']
 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L200', 'L201', 'L202', 'L203']
 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L204', 'L205', 'L206']
 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L207', 'L208']
 u0 +++$+++ u2 +++$+++ m0 +++$+++ ['L271', 'L272', 'L273', 'L274', 'L275']

- movie title meta

 m0 +++$+++ 10 things i hate about you +++$+++ 1999 +++$+++ 6.90 +++$+++ 62847 +++$+++ ['comedy', 'romance']
 m1 +++$+++ 1492: conquest of paradise +++$+++ 1992 +++$+++ 6.20 +++$+++ 10421 +++$+++ ['adventure', 'biography', 'drama', 'history']
 m2 +++$+++ 15 minutes +++$+++ 2001 +++$+++ 6.10 +++$+++ 25854 +++$+++ ['action', 'crime', 'drama', 'thriller']
 m3 +++$+++ 2001: a space odyssey +++$+++ 1968 +++$+++ 8.40 +++$+++ 163227 +++$+++ ['adventure', 'mystery', 'sci-fi']
 m4 +++$+++ 48 hrs. +++$+++ 1982 +++$+++ 6.90 +++$+++ 22209 +++$+++ ['action', 'comedy', 'crime', 'drama', 'thriller']
 m5 +++$+++ the fifth element +++$+++ 1997 +++$+++ 7.50 +++$+++ 133756 +++$+++ ['action', 'adventure', 'romance', 'sci-fi', 'thriller']

- character meta

 u0 +++$+++ BIANCA +++$+++ m0 +++$+++ 10 things i hate about you +++$+++ f +++$+++ 4
 u1 +++$+++ BRUCE +++$+++ m0 +++$+++ 10 things i hate about you +++$+++ ? +++$+++ ?
 u2 +++$+++ CAMERON +++$+++ m0 +++$+++ 10 things i hate about you +++$+++ m +++$+++ 3
 u3 +++$+++ CHASTITY +++$+++ m0 +++$+++ 10 things i hate about you +++$+++ ? +++$+++ ?
 u4 +++$+++ JOEY +++$+++ m0 +++$+++ 10 things i hate about you +++$+++ m +++$+++ 6
Demo
Extras
Gradient Decent

Fictitious Loss Surface With Gradient Field
Neural Networks

- Parameterized function
 - \(Z_M = \sigma(\alpha_{0m} + \alpha_m X) \)
 - \(T_K = \beta_{0k} + \beta_k Z \)
 - \(f_K(X) = g_k(T) \)
 - Linear Transformations with bias (Affine?) and point wise evaluation of nonlinear function, \(\sigma \)

- \(\beta_{0i}, \beta_i, \alpha_{0m}, \alpha_m \)
 - Weights to be optimized