Skip to main content

NCSA allocates over $2.4 million in new Blue Waters supercomputer awards to Illinois researchers


Fifteen research teams at the University of Illinois at Urbana-Champaign have been allocated computation time on the National Center for Supercomputing Applications (NCSA) sustained-petascale Blue Waters supercomputer after applying in the Fall of 2017. These allocations range from 75,000 to 582,000 node-hours of compute time over either six months or one year, and altogether total nearly four million node-hours (128 million core hour equivalents), valued at $2.48 million. The research pursuits of these teams are incredibly diverse, ranging anywhere from studies on very small HIV capsids to massive binary star mergers.

Blue Waters, one of the world’s most powerful supercomputers, is capable of sustaining 1.3 quadrillion calculations every second and at peak speed can reach a rate of 13.3 petaflops (calculations per second). Its massive scale and balanced architecture help scientists and scholars alike tackle projects that could not be addressed with other computing systems.

NCSA’s Blue Waters project provides University of Illinois faculty and staff a valuable resource to perform groundbreaking work in computational science and is integral to Illinois’ mission to foster discovery and innovation. To-date the project has allocated a total of 64.6 million node-hours, a $40 million equivalent, to Illinois-based researchers through the Illinois General Allocations program. The system and the University’s robus HPC community presents a unique opportunity for the U of I faculty and researchers, with about 4 percent of the capacity of Blue Waters allocated annually to projects being done at the University through a campuswide peer-review process.

The next round of proposals will be due March 15, 2018. To learn how you could receive an allocation to accelerate your research, visit https://bluewaters.ncsa.illinois.edu/illinois-allocations.

FALL 2017 ILLINOIS ALLOCATIONS

General Awards

Tandy Warnow (Computer Science): Improved Methods for Phylogenomics, Proteomics, and Metagenomics

Aleksei Aksimentiev (Physics): Epigenetic Regulation of Chromatin Structure and Dynamics

Ryan Sriver (Atmospheric Sciences): The response of tropical cyclone activity to global warming in the Community Earth System Model (CESM)

Eliu Huerta Escudero (Astronomy): Simulations of Compact Object Mergers in support of NCSA’s LIGO commitment

Juan Perilla and Jodi Hadden (Beckman Institute): Unveiling the functions of the HIV-1 and hepatitis B virus capsids through the computational microscope

Brad Sutton (Bioengineering): HPC-based computational imaging for high-resolution, quantitative magnetic resonance imaging

Nancy Makri (Chemistry): Quantum-Classical Path Integral Simulation of Charge Transfer Reactions

Stuart Shapiro, Milton Ruiz, and Antonios Tsokaros (Physics): Studies In Theoretical Astrophysics and General Relativity

Narayana Aluru (Mechanical Engineering): Systematic thermodynamically consistent structural-based coarse graining of room temperature ionic liquids

Matthew West (Mechanical Engineering), Nicole Riemer (Atmospheric Sciences) and Jeffrey H. Curtis (Atmospheric Sciences): Verification of a global aerosol model using a 3D particle-resolved model (WRF-PartMC)

Gustavo Caetano-Anolles (Crop Sciences): How function shapes dynamics in evolution of protein molecules

Benjamin Hooberman (Physics): Employing deep learning for particle identification at the Large Hadron Collider

Brian Thomas (Mechanical Engineering): Multiphysics Modeling of Steel Continuous Casting

Hsi-Yu Schive (NCSA) and Matthew Turk (Information Sciences): Ultra-high Resolution Astrophysical Simulations with GAMER

Exploratory Awards

Seid Koric (NCSA): Enhancing Alya Multiphysics Code with SWMP Solver and Solving Large Scale Ill-Conditioned Problems

Andrew Ferguson (Materials Science and Engineering): In Silico Vaccine Design through Empirical Fitness Landscapes and Population Dynamics

Oluwasanmi Koyejo (Computer Science): Dynamic Brain Network Estimation

William Gropp (NCSA), Erin Molloy (Computer Science) and Tandy Warnow (Computer Science): Designing scalable algorithms for constructing large phylogenetic trees (almost without alignments) on supercomputers

Iwona Jasiuk (Mechanical Engineering): Hierarchical Modeling of Novel Metal-Carbon Materials

Mark Bell (Math): Minimal Mixing: Exploring the Veering Automata

About NCSA

The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

About Blue Waters

Blue Waters is one of the most powerful supercomputers in the world. Located at the University of Illinois, it can complete more than 1 quadrillion calculations per second on a sustained basis and more than 13 times that at peak speed. The peak speed is almost 3 million times faster than the average laptop. Blue Waters is supported by the National Science Foundation and the University of Illinois; the National Center for Supercomputing Applications (NCSA) manages the Blue Waters project and provides expertise to help scientists and engineers take full advantage of the system for their research.

The Blue Waters sustained-petascale computing project is supported by the National Science Foundation (awards OCI-0725070, ACI-0725070 and ACI-1238993) and the state of Illinois.

Disclaimer: Due to changes in website systems, we've adjusted archived content to fit the present-day site and the articles will not appear in their original published format. Formatting, header information, photographs and other illustrations are not available in archived articles.

Back to top