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Abstract 
 

This paper provides an evaluation of SGI® RASC™ 

RC100 technology from a computational science software 

developer’s perspective.  A brute force implementation of 

a two-point angular correlation function is used as a test 

case application.  The computational kernel of this test 

case algorithm is ported to the Mitrion-C programming 

language and compiled, targeting the RC100 hardware.  

We explore several code optimization techniques and 

report performance results for different designs.  We 

conclude the paper with an analysis of this system based 

on our observations while implementing the test case.  

Overall, the hardware platform and software development 

tools were found to be satisfactory for accelerating 

computationally intensive applications, however, several 

system improvements are desirable. 

 

 

1. Introduction 
 

High-performance reconfigurable computing (HPRC) 

based on the combination of conventional microprocessors 

and field-programmable gate arrays (FPGAs) is growing 

beyond its original niche.  This technological approach 

combines the advantages of the coarse-grain, process-level 

parallel processing provided by conventional 

multiprocessor systems with the fine-grain, instruction-

level parallel processing available with FPGAs [1].  HPRC 

in its present stage is a rapidly evolving technology with 

interesting potential, but it has yet to overcome numerous 

challenges in order to be accepted as a mainstream 

computing paradigm.  Programmability, code 

compatibility, and portability are among the challenges the 

technology currently faces before its acceptance by the 

computational community. 

Traditional high-performance computing (HPC) 

vendors such as SGI® and Cray Inc. have introduced 

several commercial HPRC products.  In addition, a number 

of newcomers in the HPC arena including SRC Computers, 

Inc. and Nallatech Ltd. have emerged with their own 

solutions.  Some vendors provide both hardware and 

software solutions, where others focus only on the 

hardware or software side of the technology.  

SGI Reconfigurable Application-Specific Computing 

(RASC™) architecture [2, 3] is a prime example of a 

heterogeneous HPRC system in which traditional 

microprocessors and FPGAs can be used together to 

accelerate computationally demanding applications.  SGI 

provides FPGA-based hardware and a supporting software 

stack that enables an application to interact with the 

reconfigurable hardware.  Tools for implementing an 

actual algorithm design for the FPGA hardware, however, 

are left to third party solution providers. 

Traditionally, FPGA designs have been built using 

hardware description languages, such as VHDL or Verilog.  

In recent years, however, several tools have been 

developed that compile a code written in a high-level 

language directly into a hardware circuitry description, 

examples include Handel-C, Impulse C, MAP C, and 

Mitrionics™ Mitrion-C SDK [4]—the tool used in this 

study.  The source code written in Mitrion-C is compiled 

by the Mitrion-C compiler into a code for the Mitrion 

processor—a proprietary virtual software processor—

followed by an automatic adaptation and implementation 

of the processor in the FPGA, which targets a specific 

hardware platform, such as the SGI RASC.  The traditional 

hardware synthesis, map, place, and route tools, such as 

those provided by Xilinx Inc., can be used to generate the 

FPGA configuration file.  This approach completely 

eliminates the need for a low-level hardware design, and 

makes it relatively straightforward for an application 

software developer to implement algorithmic cores on the 

RC100 platform. 

In this report, we provide a technical analysis of SGI‘s 

third generation RASC system, the RC100.  The evaluation 

of this system is based on the implementation of the kernel 

of a computationally intensive algorithm used to study the 

distribution of matter in the universe [5].  The algorithm is 

computationally and data intensive, and, therefore, it 

provides a good test case that requires double-precision 

floating-point arithmetic with computational complexity of 

O(N
2
).  We use the Mitrion-C programming language to 

develop the FPGA-accelerated side of the algorithm, while 
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the host CPU code is implemented in standard ANSI C 

using the RASC library [3].  We compare the performance 

of two FPGAs from the RC100 blade to the performance 

of two 1.4 GHz Intel Itanium 2 chips on the SGI Altix 350 

system.  Table 1 lists the versions of the different software 

components we used in the course of this work. 

 

 

Tool Version 

SGI RASC RASC 2.0 SGI ProPack 4 Service Pack 3 

Mitrion SDK 1.2.3 build 224 

Xilinx ISE 8.1.03i 

gcc 3.2.3 

 

Table 1. The specific versions of the software tools used in 

this analysis. 

 

 

This paper is organized as follows.  We describe the 

SGI RC100 hardware architecture and RASC software 

stack in Section 2.  The RASC software development flow 

using Mitrion SDK is reviewed in Section 3.  We present 

the test case algorithm in Section 4.  In Section 5 we detail 

our evaluations, including: details of several algorithm 

implementations on RC100 platform, various optimization 

techniques, and performance results and comparison with a 

related CPU-based implementation.  Finally, we discuss 

our evaluation of the system based on our experience in 

porting our test case in Section 6. 

 

 

2. The SGI Altix 350 with RC100 blade 
 

In our analysis, we use a standalone, single-module SGI 

Altix 350 system [6] with a single dual-blade chassis 

containing one RC100 blade [3].  The SGI Altix 350 is a 

dual-1.4 GHz Intel Itanium 2 system with 4 GBs of 

physical memory.  An RC100 blade is attached to the host 

system via a NUMAlink 4 interconnect (see Fig. 1). 
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Figure 1.  SGI Altix 350 with dual-blade chassis 

containing one RC100 blade. 

 

 

The RC100 is SGI‘s third-generation Reconfigurable 

Application-Specific Computing hardware module.  It 

contains two computational FPGAs, two peer-to-peer I/O 

(TIO) ASICs and a special-purpose FPGA for loading 

bitstreams onto the computational FPGAs (see Fig. 2).  

The two user FPGAs are connected to the corresponding 

TIO ASICs via the Scaleable System Ports (SSPs).  In 

addition, 10 QDR SRAM memory modules, each up to 8 

MB, can be installed, in configuration up to five banks per 

FPGA chip.  The SRAMs are configured as two banks to 

match the NUMAlink 4 channel bandwidth (3.2 Gbyte/sec) 

to the memories (2x1.6 Gbyte/sec). 

The two user FPGAs are Xilinx Virtex 4 LX200 

(XC4VLX200-FF1513-10) chips.  Each chip contains 

200,448 logic cells, 336 Block RAM/FIFOs with 6,048 

kbits of total Block RAM, 96 DSP48 slices, and 960 user 

I/O pins.  The maximum clock frequency of the chips, as 

implemented in the RC100, is 200 MHz.  A portion of 

each chip is allocated to the RASC Core Services logic 

with the rest of the logic allocated to the user algorithm 

block (see Fig. 3).   
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Figure 2.  A diagram showing the RC100 blade hardware. 
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Figure 3.  A diagram showing the computational FPGA 

with the User Algorithm Block and various components of 

the RASC Core Services. 

 

 

RASC Core Services implement an interface between 

the TIO chip and SRAMs attached to the FPGA.  They 

also provide memory-mapped register (MMR) inputs and 
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algorithm control logic.  The user algorithm block has 

direct access to MMR inputs and access to SRAM via 

external memory logic implemented as part of the RASC 

Core Services.  The user algorithm block has access to two 

dual-port memory resources; each is 128-bit wide and up 

to 1 million words deep (16 MB per port per bank). 

We used the RASC 2.0 SGI ProPack 4 Service Pack 3 

software, which is detailed in Fig. 4.  The RASC kernel 

driver and FPGA bitstream download driver operate at the 

OS level.  The RASC Abstraction Layer provides an API 

for both the kernel device driver and the RASC hardware.  

This software layer implements data movement from/to 

devices and spreads the workload across multiple devices.  

The Abstraction Layer is implemented as two layers: the 

Co-Processor (COP) level and the algorithm level which is 

built on top of the COP layer.  The COP layer provides an 

interface to work with individual devices, whereas the 

algorithm layer treats a collection of devices as a single 

logical device.  The use of these two layers is mutually 

exclusive.  User applications make calls to the RASC 

Abstraction Layer to gain access to the hardware.  The 

Device Manager is a user-space utility for bitstream 

management. 
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Figure 4.  The RASC software stack. 

 

 

3. The RASC software development flow 
 

The Mitrion SDK [4] provides the framework in which 

we implemented our algorithm on the RC100 platform.  

The bitstream development path using Mitrion-C as a high-

level language is shown in Fig. 5.  Mitrion-C source can be 

verified for correctness using a functional 

simulator/debugger provided with the SDK.  The Mitrion-

C compiler will generate VHDL code from the Mitrion-C 

source and setup the instance hierarchy of the RASC 

FPGA design [3] that includes the user algorithm 

implementation, the RASC Core Services, and 

configuration files necessary to implement the design.  The 

design is then synthesized using the Xilinx suite of 

synthesis and implementation tools (in our testing we used 

version 8.1.03i).  In addition to the bitstream generated by 

the Xilinx ISE, two configuration files are created: one 

describes the algorithm‘s data layout and streaming 

capabilities to the RASC Abstraction Layer (bitsream 

configuration file) and the other describes various 

parameters used by the RASC Core Services.  These files, 

together with the bitstream file, are required by the device 

manager to communicate with the algorithm that is 

implemented on the FPGA.  Various design verification 

and debugging capabilities exist in the SDK; however, they 

are beyond the scope of our work. 

We used the Mitrion SDK version 1.2.3, build 224 in 

our testing, which consists of the Mitrion-C language 

compiler, integrated development environment, data-

dependency graph visualization and simulation tool, 

Mitrion Host Abstraction Layer (MITHAL) library, and 

the target platform-specific processor configurator.  

Mitrion-C source code is compiled into an intermediate 

virtual processor machine code that can be used by the 

simulator/debugger or processed by a processor 

configurator to produce a VHDL design of the application-

specific Mitrion Virtual Processor for the final hardware 

platform (see Fig. 6).  Note that the Mitrion Virtual 

Processor for RC100 is designed to operate at 100 MHz, 

half the max clock frequency of the RC100 blade. 
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Figure 5.  The RASC FPGA algorithm design flow. 

 

 

The Mitrion-C programming language [4] is an 

intrinsically parallel language.  Its data types, such as lists 

and vectors, and language constructs, such as loops, are 

designed to support parallel execution driven by the data 

dependencies.  The Mitrion Virtual Processor [4], a 

proprietary product, is a parallel soft-core processor for 

FPGAs that executes software written in the Mitrion-C 
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programming language.  In essence, it is a dataflow graph 

in which each node implements a processing element 

specific to the user application (―cluster on a chip‖). 
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Figure 6.  The Mitrion-C compilation process. 

 

 

4. The test case 
 

As a test case, we consider the problem of computing 

the two-point correlation function [7].  The two-point 

correlation function measures the frequency distribution of 

separations between coordinate positions in a parameter 

space as compared to randomly distributed coordinate 

positions across the same space.  In this work, we focus on 

correlation functions that characterize the clustering of 

extragalactic objects [e.g., 5] as they are both 

computationally and data intensive.  We focus on the 

angular separations,  between two objects on the 

celestial sphere, which form the basis for the two-point 

angular correlation function (TPACF), which we denote 

.  Qualitatively, a positive value of indicates that 

objects are found more frequently at angular separations of 

 than would be expected for a randomly distributed set of 

coordinate points (a correlation).   

A detailed description of the underlying mathematical 

model used to compute TPACF can be found in [7] and 

[8]; a brief summary is provided below.  The two-point 

angular correlation function is computed as 
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where nR is the number of sets of random points, DD, DR, 

and RR are angular separation distributions between data 

points, data and random points, and random points, 

respectively.  The random data sets are equivalent in size 

to the data set under analysis.  

Observationally, determining  requires binning the 

separation distributions at some angular resolution .  

The binning schema used by astronomers is typically 

logarithmic, as clustering patterns can be important in 

extragalactic astronomy across a wide range of angular 

scales.  Each decade of angle in the logarithmic space is 

divided equally between k bins, meaning that there are k 

equally-logarithmically-spaced bins between, for example, 

0.01 and 0.1 arcminutes.  The bin edges are then defined 

by 10
j/k

, where j=-∞,…,-1,0,1,…+∞  Thus, the problem of 

computing angular separation distributions can be 

expressed as follows: 

 

 Input: Set of points x1, .., xn distributed on the surface 

of a sphere, and a small number M of bins: [0, 1), 

[1, 2), .., [M-1, M]. 

 Output: For each bin, the number of unique pairs of 

points (xi, xj) for which the angular distance is in the 

respective bin: Bl = |{ij: l-1 <= xi·xj < l}|. 

 

The computation of the angular distance  between a 

pair points on the sphere requires converting the spherical 

coordinates to Cartesian coordinates, computing their dot 

product, and taking the arccosine of the computed dot 

product.  Once the distance is known, it can be mapped 

into the respective angular bin Bl: 

 

 )log(logint min1010   kl  (2) 

 

where min is the smallest angular separation that can be 

measured.  Note that this binning schema requires the 

calculation of the arccosine and logarithm functions, 

which are computationally expensive.  If only a small 

number of bins are required, a faster approach is to project 

the bin edges to the pre-arccosine ―dot product‖ space and 

search in this space to locate the corresponding bin.  Since 

the bin edges are ordered, an efficient binary search 

algorithm can be used to quickly locate the corresponding 

bin in just log2M steps. We therefore adopt this approach 

to determine the binned counts. 

Henceforth, we will refer to DD() or RR() counts as 

autocorrelations and DR() counts as cross-correlations, 

and the full angular two-point autocorrelation, as defined 

by Equation 1, as the TPACF, or simply as .  Note that 

formally, the calculation of the cross-correlation requires 

ND
2
log2M steps whereas the autocorrelation is computed in 

(ND(ND-1)/2)log2M steps. 

We use a sample of photometrically classified quasars, 

and random catalogs, first analyzed by [5] to calculate 

.  We specifically used one hundred random samples 

(nR=100); the actual dataset and each of the random 
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realizations contain ~100,000 points (ND=97160). In 

addition, we employed a binning schema with five bins per 

decade (k=5), min=0.01 arcminutes and max=10000 

arcminutes.  Thus, angular separations are spread across 6 

decades of scale and require 30 bins (M=30).  Covering 

this range of scales requires the use of double-precision 

floating-point arithmetic as single-precision numbers do 

not provide the precision sufficient to compute  values 

smaller than 1 arcminute. 

 

 

5. The TPACF on the SGI Altix/RC100 
 

5.1. Reference C implementation of the TPACF 
 

As a reference, we first consider a C implementation of 

the algorithm presented in Section 4.  The computational 

core of the algorithm is a subroutine which calculates 

binned separation distributions for either DD() or DR() 

binned counts, depending on the input parameters.  Pseudo 

code of the core of this subroutine can be found in the 

Appendix Code 1. 

Initially, the data points are loaded and converted from 

spherical to Cartesian coordinates, and the DD() 

autocorrelation is computed.  Next, nR sets of ND random 

points are loaded/converted one set at a time.  For each 

random set, the RR() autocorrelation and the DR() 

cross-correlation are computed and stored. Finally, we 

compute  according to Equation 1.  Pseudo code of the 

overall algorithm can be found in the Appendix Code 2. 

The SGI Altix system contains two processors; thus the 

cross-correlation and autocorrelation subroutines can be 

executed simultaneously. In the reference C 

implementation, we use pthreads to implement the parallel 

execution of these code sections.  The data load and 

conversion subroutine is kept out of the parallel code to 

enable a more precise performance characterization. We 

present performance characteristics of this implementation 

in the second Column Table 6.  This code was compiled 

with the gcc version 3.2.3 compiler that was supplied with 

the SGI Altix 350 system using the -O3 -ffast-math -

funroll-loops -fprefetch-loop-arrays optimizations.  The 

overall execution time of the reference C implementation, 

including data I/O, was 86,315.7 seconds. 

 

5.2. Mitrion-C kernel implementation 
 

The autocorrelation/cross-correlation subroutine was re-

written in the Mitrion-C language, targeting the RC100 

platform.  Structurally, the Mitrion-C implementation of 

the computational core, which is presented in Appendix 

Code 3, resembles the reference C implementation.  The 

Mitrion-C data dependency graph produced by the 

Mitrion-C simulator is shown in Fig. 7.  This graph can be 

used to verify the run-time behavior of the implementation 

before it is compiled into hardware.  Thus, on each 

iteration of the outer loop, a new point is loaded from the 

off-chip memory and is used throughout the entire inner 

loop execution.  On each iteration of the inner loop, a new 

point is loaded from the off-chip memory and is used in the 

computation of the dot product.  Once the dot product is 

computed, the bin to which it belongs is identified and 

updated.  Actual bin boundaries are hardcoded in this 

initial implementation; they are saved as a vector which is 

stored on the chip.  This storage mechanism allows the 

Mitrion-C compiler to fully unroll the bin array search 

‗for‘ loop into a 32-stage deep pipeline.  Once the bin 

index is found, the corresponding bin value is incremented 

by one.  Initially, bin values are stored as a vector and set 

to zero.  As with the bin boundaries, this storage 

mechanism allows the Mitrion-C compiler to fully unroll 

the bin update ‗foreach‘ loop into a wide pipeline.  Since 

the bin search and bin update loops can be fully unrolled, 

the compiler is able to produce a fully pipelined inner loop 

implementation, thus generating an efficient overall 

algorithm implementation in which a new result is 

produced on each clock cycle.  After all the calculations 

are done, the resulting bin values are written back to the 

off-chip memory.  From there, they are copied to the host 

memory via a RASC library call. 

On the RC100 platform, the Mitrion-C processor has 

access to just two off-chip memory banks; each such bank 

is 128-bit wide and a few Megabytes deep.  This memory 

is single-ported as far as the memory read access from the 

user application is concerned.  Since the point coordinates 

are stored as double-precision floating-point numbers, each 

point requires 3x64 bits of storage space.  In order to avoid 

a pipeline stall while reading each data point, we distribute 

coordinate points between the two memory banks as shown 

in Tables 2 and 3.  This data storage schema allows 

simultaneous access to the coordinate values of a single 

data point within a single clock. 

 

 
 Bank 1 Bank 2 

 Memory 

address 

0…63 

bits 

64…127 

bits 

0…63 

bits 

64…127 

bits 

d
at

a 

se
t 

1
 0 x0 y0 z0 unused 

i xi yi zi unused 

N-1 xN-1 yN-1 zN-1 unused 

d
at

a 

se
t 

2
 N x0 y0 z0 unused 

N+j xj yj zj unused 

2N-1 xN-1 yN-1 zN-1 unused 

 

Table 2.  Off-chip memory usage for the cross-correlation 

calculation.  Here N denotes the number of points in each 

dataset (same as ND in Chapter 4 and NPOINTS in the 

Appendix Code 3). 
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 Bank 1 Bank 2 

 Memory 

address 

0…63 

bits 

64…127 

bits 

0…63 

bits 

64…127 

bits 

d
at

a 

se
t 

1
 0 x0 y0 z0 unused 

i xi yi zi unused 

N-1 xN-1 yN-1 zN-1 unused 

d
at

a 

se
t 

1
 N x0 y0 z0 unused 

N+i xi yi zi unused 

2N-1 xN-1 yN-1 zN-1 unused 

 

Table 3.  Off-chip memory usage for the autocorrelation 

calculation.  The same dataset is repeated twice in the off-

chip memory; this means we can use the same subroutine 

for both the autocorrelation and cross-correlation 

calculations. 

 

 

 
 

Figure 7.  The Mitrion-C data dependency graph for the 

source code shown in Code 3 from the Appendix. 

 

 

Note that even though our Mitrion-C implementation of 

the computational kernel is setup as a cross-correlation 

subroutine, we also use this kernel to compute the 

autocorrelation function.  The only drawback of using this 

subroutine to compute the autocorrelation is that the final 

bin counts need to be divided by two and the overall 

execution time is twice the time actually required to 

compute the autocorrelation.  This approach was necessary 

since, at the time this work was done, Mitrion-C did not 

provide an efficient way to implement variable length 

loops as required for the inner loop in a true 

autocorrelation implementation. 

Since the data structure used in the reference C 

implementation is not compatible with the required 

memory usage model shown in Tables 2 and 3, the data on 

the host system had to be reformatted before it was sent to 

the RC100 module memory.  This adds to the total 

algorithm execution time, but the overhead was minimal.  

Code 4 in the Appendix shows the host wrapper pseudo 

code that demonstrates how the FPGA-accelerated code 

was used in the final implementation.  As with the 

reference C implementation, since there are two FPGAs in 

the RC100 blade, the cross- and autocorrelation kernels 

were executed simultaneously, one subroutine per FPGA. 

During the code compilation stage, the Mitrion-C 

compiler outputs various code analysis statistics, such as 

the bandwidth, execution time, read/write access to 

external memory, and the FPGA resources utilization.  

Thus, the overall Mitrion-C code execution time, as 

reported by the Mitrion-C compiler, was 94 seconds 

(9,440,259,920 steps at 100MHz), with 29% Flip Flops, 

8% BlockRAMs, and 50% hardware multipliers used (see 

Table 4).  These estimates are fairly close to the resource 

utilization statistics reported by the Xilinx place and route 

tools: 28% Flip Flops, 8% BlockRAMs, and 50% 

hardware multipliers usage.  Overall, 47% of slices were 

occupied by the final design and all timing constraints 

were met.  Execution time of a single run of the 

computational kernel, including data reformatting and 

transfer, was 99.4 seconds.  Overall execution time of the 

entire program, including data I/O, was 10,071 seconds.  

Thus, we achieved an 8.6x overall code execution speedup 

as compared to the reference C implementation. 

 

 
 Total 

available 

Mitrion-C 

estimate 

After place 

and route 

Slices 89,088  42,346 (47%) 

Flip Flops 178,176 51,327 (29%) 50,128 (28%) 

LUTs 178,176  48,724 (27%) 

BlockRAMs 336 29 (8%) 27 (8%) 

DSP48s 96 48 (50%) 48 (50%) 

P&R time 5 hours 24 minutes 7 seconds 

 

Table 4.  The FPGA resource utilization as predicted by 

the Mitrion-C compiler (column 3) and the actual usage 

after the place and route (last column). 
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5.3. Kernel optimizations 
 

In the previous section, a straightforward port of the 

computational kernel to RC100 platform was described.  

However, in order to realize the full potential of this 

platform one needs to consider how to better utilize all 

available resources and the added flexibility provided by 

the FPGA technology.  In this section, we describe the 

various code optimization methodologies that were applied 

with the goal of achieving the highest possible 

performance of the algorithm. 

 

5.3.1. Multiple execution pipelines 

 

In the first implementation, 47% of slices and 50% 

hardware multipliers were occupied by the final design.  

The Mitrion-C compiler uses 16 hardware multipliers to 

implement a single double-precision floating-point 

multiplier.  This requires 48 (50% of all available) 

hardware multipliers to implement a 3D dot product on the 

Xilinx Virtex-4 VLX200 chip, leaving 48 hardware 

multipliers unused. As a result, there were sufficient FPGA 

resources left on the chip to implement an additional 

compute engine per chip. 

The modifications to the Mitrion-C source code 

necessary to implement the two compute engines per chip 

were trivial: two points are loaded instead of one from the 

off-chip memory on each iteration of the outer loop and 

two separate dot product/bin mapping/bin update paths 

were instantiated inside the inner loop.  The results were 

merged at the end before they are stored in the off-chip 

memory.  No modifications to the previously used data 

storage or subroutine call from the host processor were 

required. 

The overall Mitrion-C code execution time of the dual-

kernel implementation, as reported by the Mitrion-C 

compiler, was 47.2 seconds (4,720,129,960 steps at 

100MHz), with 45% Flip Flops, 8% BlockRAMs, and 

100% hardware multipliers used (see Table 5).   

 

 
 Total 

available 

Mitrion-C 

estimate 

After place and 

route 

Slices 89,088  70,301 (78%) 

Flip Flops 178,176 80,490 (45%) 82,666 (46%) 

LUTs 178,176  83,600 (46%) 

BlockRAMs 336 29 (8%) 27 (8%) 

DSP48s 96 96 (100%) 96 (100%) 

P&R time 1 days 11 hours 3 minutes 23 seconds 

 

Table 5. The FPGA resource utilization for dual-kernel 

design as predicted by the Mitrion-C compiler (column 3) 

and the actual usage after the place and route (last 

column). 

The Xilinx place and route tools report 46% Flip Flops, 

8% BlockRAMs, and 100% hardware multipliers usage, 

which was in a good agreement with the Mitrion-C 

compiler estimates.  Overall, 78% of slices were occupied 

by the final design and all timing constraints were met.  

Execution time of a single run of the computational kernel, 

including data reformatting and transfer, is 49.7 seconds 

and the overall code execution time is 5,052.5 seconds – a 

17x speedup as compared to the reference C 

implementation. 

 

5.3.2. Fixed-point, bit-width data 

 

A closer examination of the numerical range of the bin 

boundaries revealed that only 12 digits after the decimal 

point (41 bits of the mantissa) are sufficient to cover our 

required numerical resolution.  Thus, instead of using 

double-precision floating-point arithmetic, we could 

simply use fixed-point arithmetic with 42 bits allocated to 

store the absolute value and one bit allocated to store the 

sign.  (Mitrion-C natively supports float and integer data 

types with an arbitrary number of bits, up to a limit.)  This 

would result in significant savings in both the number of 

hardware multipliers and the logic required to implement 

the arithmetic operations.  In the end, these resource 

savings could allow us to place four compute engines per 

chip instead of the initial two, thus potentially doubling the 

performance of the computational kernel.  However, even 

though there were sufficient resources on the chip to place 

four computational kernels the design never met timing 

requirements, despite numerous attempts.  A design with 

only three computational kernels using 42-bit integer 

arithmetic also did not meet timing requirements.  A 

complete analysis of these results, however, is beyond the 

scope of this current paper. 

 

5.3.3. Optimization of the autocorrelation subroutine  

 

As was mentioned in Section 5.3, the same FPGA-

based computational kernel was used to compute both the 

cross-correlation and autocorrelation.  In practice, this 

results in an inefficient implementation for the 

autocorrelation calculation as it requires twice the number 

of actual operations.  When this work was performed, 

Mitrion-C did not provide an efficient way to implement 

variable length loops as required for the inner loop in the 

autocorrelation algorithm.  However, since the combined 

number of outer/inner loop iterations is known: ND
2
 

iterations in the case of the cross-correlation and (ND(ND-

1)/2) iterations in the case of the autocorrelation, the 

inner/outer loops can be fused into a single loop.  As the 

result, a more efficient implementation of the 

autocorrelation kernel can be obtained.  We did not pursue 

this implementation, however, as it would have little effect 
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on the overall code performance, because in the present 

implementation the overall code performance is bound by 

the cross-correlation subroutine – the longer of two 

concurrent code sections. 

 

5.3.4. Wide scaling and streaming 

 

The RASC Abstraction Layer and the underlying RASC 

Core Services provide support for two unique capabilities: 

multi-buffering and wide scaling.  In the case of wide 

scaling, the application can reserve all available devices 

and the Abstraction Layer can first spread the data across 

multiple devices and then loop over the devices until all 

the data is processed.  In the case of multi-buffering, the 

Abstraction Layer divides data into smaller segments and 

overlaps the data transfer with the calculations on the 

FPGA.  Multi-buffering can hide the data transfer cost, 

while wide scaling allows an efficient and fully transparent 

use of multiple FPGAs by the application. 

Unfortunately, neither of these capabilities can be 

exploited in the current application.  In order to enable the 

data streaming mode, each logical memory bank must be 

declared for either read or write access, but not for both.  

However, in our case one memory bank is declared for 

both read (z coordinates of the points as shown in Tables 2 

and 3) and write (bin counts are transferred out via this 

bank as well).  This precludes the implementation of the 

double buffering mechanism required for the data 

streaming mode.  Yet, even if it would have been possible 

to implement this capability, the savings would have been 

minimal as the FPGA algorithm is largely dominated by 

the computational kernel rather than transferring of data. 

In the case of our system, there are two FPGAs 

available, but because both of them are used 

simultaneously for different tasks, the wide scaling 

capability, as provided by the RASC Abstraction Layer, 

cannot be used either.  Note, however, that in our 

application the wide scaling capability is, in essence, setup 

and used explicitly: once the workload for each chip is 

defined, a separate thread is created manually. 

 

5.4. On the fairness of the speedup comparison 
 

Is it fair to compare the performance of our reference C 

implementation with the performance of the RC100 

implementation?  The reason why this question is brought 

up here is because the reference C implementation is setup 

to operate on an array of bins (into which the distances are 

mapped) of an arbitrary size whereas the Mitrion-C code is 

written to operate with the fixed size bin array.  If we fix 

the size of the bin array in our reference C implementation 

and manually unroll the binary search loop, as is done by 

the compiler in the Mitrion-C implementation, the 

performance comparison will be more accurate since it will 

more accurately reflect the fact that both codes are 

optimally written to perform under similar conditions.  

Such an optimized implementation outperforms our 

original reference C implementation almost by a factor of 2 

(see Table 6). 

 

5.5. Performance results 
 

Table 6 provides execution time measurements for the 

reference C implementation (column 2), two 

implementations in which the computational subroutine 

was successfully ported to the FPGA (columns 3 and 4), an 

estimation for the quad-kernel implementation (column 5) 

and the optimized reference C implementation (last 

column) as described in Section 5.4.  FPGA execution time 

(row 4) is taken from the Mitrion-C compiler report while 

DD (autocorrelation for the actual dataset), DR+RR 

(autocorrelation for the random data plus cross-correlation 

for the actual and random data) and the load/convert times 

are actual measurements.  Overall speedup is reported as 

the ratio between the total time spent by the optimized 

reference C implementation and the time spent by the 

corresponding FPGA-accelerated implementation.  

Note that the computational core was executed 

simultaneously by the two microprocessors in both the 

reference C implementation and the optimized reference C 

implementation and by the two FPGAs in the FPGA-

accelerated implementations.  Also, data I/O and data pre-

processing stages are all included in the overall execution 

time.  Thus, the end-to-end application speedup is reported 

rather than the computational core-only speedup, as often 

found in the literature. Our most successful implementation 

(Table 6, column 4) outperforms the optimized reference C 

implementation by a factor of 9.5.  The integer arithmetic, 

quad-kernel implementation (Table 6, column 5) has a 

potential to outperform the microprocessor implementation 

by a factor of 18.8, however this design did not meet 

timing requirements. 

 

 
Measured 

features/ 

parameters 

Reference 

C imple-

mentation 

 

Code 

from 

section 

5.2 

Code 

from 

section 

5.3.1 

Code 

from 

section 

5.3.2* 

Optimi-

zed refe-

rence C 

# CPUs 2    2 

# FPGAs  2 2 2  

FPGA exec (s)  94 47.2 23.6  

DD time (s) 428.4 99.4 49.7 24.9 226.6 

DR+RR time (s) 85,859.9 9,943.6 4,975.3 2,487.7 47,598.6 

Load/convert (s) 27.4 28 27.5 28 28.4 

Total (s) 86,315.7 10,071 5,052.5 2,540.5 47,853.6 

Overall Speedup 0.6x 4.8x 9.5x ~18.8x  

 

Table 6.  The performance results for the three 

implementations.  *) This column is an estimate for the 

quad-kernel implementation. 
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6. Discussion 
 

In this section, we discuss specific issues that we 

uncovered while implementing the TPACF algorithm on 

the SGI RC100 compute blade. 

An RC100 blade uses two Xilinx Virtex 4 VLX200 

chips.  These are large FPGAs; each chip contains 89,088 

logic slices and 6,048 kbits of total Block RAM.  

However, VLX200 chips have only 96 18x18 hardware 

multipliers (called DSP48 slices), which is sufficient to 

implement only 6 double-precision floating-point 

multipliers using Mitrion-C.  This is even less than what 

was available on the FPGAs used in the second-generation 

RASC boards [2].  Of course additional multipliers can be 

made out of logic cells, however, they require a substantial 

number of slices.  Thus, while suitable for applications that 

require only a few floating-point multiplications, VLX200 

chips are not appropriate for scientific computing 

applications that rely on double-precision floating-point 

operations. 

Place and route times for large FPGAs, such as 

VLX200, are substantial.  A design that occupies roughly 

50% of the chip (see, e.g., Section 5.2) requires over 5 

hours to place and route.  Larger designs, for example, 

those that approach 100% slice utilization, result in lengthy 

bitstream synthesis.  As an example, place and route time 

for the design presented in Section 5.3.1 is over 35 hours. 

Each FPGA on the RC100 board is connected to five 

QDR SRAM DIMMs.  However, the current version of the 

RASC Core Services provides access to only four of them 

for the user algorithm, arranged as two 128-bit wide banks.  

Thus, while the actual hardware provides some substantial 

bandwidth to the off-chip memory, the logical memory 

partitioning is not optimal for many applications, and it can 

actually prevent maximum performance from being 

achieved.  Consider our application as an example.  On 

each clock cycle, the computational core requires three 

words, each 64 bits wide.  To be efficient, the data have to 

be spread between the two logical banks (see Section 5.2 

for details).  Thus, 2x128 bits of storage are required to 

store 3x64 bits of data.  (Note that it is possible to compact 

the data so that no space is wasted, but it still will have to 

be stored in two logical memory banks to be efficient.)  At 

the end, one of the logical memory banks is reused to send 

the results back to the host application.  Thus, this memory 

bank is declared as read-write, which means that the 

double-buffering schema necessary to overlap the data 

movement with calculations cannot be implemented (we 

note that it would not affect the results for our application).  

However, if instead of having two 128-bit wide logical off-

chip memory banks, the system would have provided four 

64-bit wide memory banks, it would have been possible to 

use three such memory banks to send data in and one bank 

to send the results back to the host system, thus enabling us 

to implement the double-buffered streaming mode.  An off-

chip memory layout in which there are multiple 64-bit 

wide memory banks is, in general, more advantageous than 

the memory layout used in RC100. 

Even though there are two FPGAs in the RC100 blade, 

no direct communication or data exchange path exists, at 

least as far as the user algorithm block in the FPGA is 

concerned.  We would have preferred having the FPGAs in 

the blade being able to access the same off-chip common 

memory, thus enabling multi-stage data processing.  If 

available though, this feature is unlikely to be of any use in 

our present test case application. 

The RASC Abstraction Layer provides a unique wide 

scaling capability that enables multiple FPGAs configured 

with the same bitstream to work concurrently on the same 

problem by automatically dividing the workload between 

them.  This functionality, however, can be trivially 

mirrored manually, as we did in our test application.  

Moreover, additional flexibility can be gained when using 

the manual procedure.  The RASC library provides a 

straightforward way for allocating individual FPGAs for 

specific tasks and multiple FPGAs can be used 

simultaneously in separate threads.  A RASC library 

wrapper code is simple and straightforward to write. 

The RASC Abstraction Layer provides an ability to 

overlap data transfer and calculations via multi-buffering.  

This feature, however, comes with some restrictions on the 

type of data movement between the host memory and the 

FPGA memory, which means that not every application 

can take advantage of this capability.  Problems that are 

―streaming‖ in nature and have no data dependencies can 

benefit from these modes of operation.  However, iterative 

applications, such as our test case, do not gain much as 

they require a substantial amount of data reuse. 

The GNU debugger (gdb) has been extended by SGI to 

enable debugging of the process executed in the FPGA(s).  

gdb interacts with the RASC Abstraction Layer to 

implement several debugging mechanisms, such as 

stepping through the execution on the FPGA and looking 

at the FPGA variables.  We did not explore using the 

debugger in this research. 

The Mitrion SDK for the RC100 has proven to be an 

effective tool to develop FPGA-accelerated algorithms.  

The compiler generates all the necessary configuration 

files, sets up the complex top-level project and compilation 

environment, and invokes the downstream compilation 

process for the RC100 RASC platform – a one button 

solution from the Mitrion-C source to the FPGA 

configuration bitstream.  There is a considerable entry cost 

though as the semantics of the Mitrion-C language is rather 

different from C/C++ or FORTRAN – the languages of 

choice in high-performance computing.  Once understood, 

however, the language is quite effective. 
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One major deficiency we ran into with the Mitrion SDK 

is the inability of the compiler to efficiently implement 

loops with a run-time defined number of iterations.  Such 

loops can be implemented via the ‗while‘ construct, 

however they are not pipelined by the compiler and 

therefore are not efficient.  Future releases of the Mitrion 

SDK are expected to address his issue. 

The RASC Abstraction Layer defines eight, 64-bit wide 

software-write/hardware-read registers that can be used to 

pass user arguments to the algorithm implemented on the 

FPGA.  In its present implementation, the Mitrion SDK for 

RC100 does not provide support for these registers. 

While using 42-bit multipliers, it was observed that the 

Mitrion-C compiler overestimated the need for FPGA 

hardware multipliers.  For example, according to the 

Mitrion-C compiler, the three-kernel version of the code 

required 81 hardware multipliers, while, once placed and 

routed, the design required only 54 hardware multipliers. 

As seen from Table 6, the FPGA execution time 

reported by the Mitrion-C compiler and the cross-

correlation subroutine time measured during the actual 

execution differs by several seconds.  For example, the 

Mitrion-C compiler reports 94 seconds as the algorithm 

execution time while we measure 99.4 seconds (Section 

5.2) — a 5.4 second difference.  As another example, the 

Mitrion-C compiler reports 47.2 seconds, while we 

measure 49.7 seconds (Section 5.3.1) — a 2.5 second 

difference.  In both cases, the same host wrapper code is 

used (the same data preprocessing step and the same 

amount of data transferred in and out).  The discrepancy 

between the compiler-reported and run-time-measured 

times for these two implementations differs by a factor of 

~2, which is proportional to the overall algorithm 

execution time ratio.  Such a discrepancy can be attributed 

to the compiler not being able to take into account the 

latency of the inner loop, or to the pipeline stalls that 

cannot be foreseen at the code compilation stage. 

 

 

7. Conclusions 
 

This evaluation, although limited to an application that 

requires double-precision floating-point arithmetic, shows 

that the SGI RC100 reconfigurable application-specific 

computing platform is a viable HPRC platform.  

Programming the RC100 using the Mitrion SDK is similar 

to programming other HPRC systems in the sense that the 

same code development methodology can be applied and 

the architecture and software-imposed challenges and 

limitations are similar to those found on other platforms.  

The Mitrion SDK for the RC100 has proven to be a 

workable solution to program the system, yet some 

language and compiler improvements, particularly with 

loops of variable numbers of iterations, are highly 

desirable.  Some modifications of the RASC Core 

Services, particularly with the off-chip memory layout, 

would also result in a more robust platform. 
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for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++) 
{ 
    xi = data1[i].x; 
    yi = data1[i].y; 
    zi = data1[i].z; 
 
    for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++) 
    { 
        double dot = xi * data2[j].x + yi * data2[j].y + zi * data2[j].z; 
 
        // binary search 
        min = 0;  max = nbins; 
        while (max > min+1)   
        { 
            k = (min + max) / 2; 
            if (dot >= binb[k])  max = k; 
            else min = k; 
        }; 
 
        if (dot >= binb[min])  data_bins[min] += 1; 
        else if (dot < binb[max]) data_bins[max+1] += 1; 
        else data_bins[max] += 1; 
    } 
} 

 

Code 1.  Pseudo code of the autocorrelation/cross-

correlation computational kernel. 

 

 
// compute bin boundaries 
for (k = 0; k < nbins+1; k++) 
    binb[k] = cos(pow(10,log10(min_arcmin) +  
                          k*1.0/bins_per_dec) / 60.0*d2r); 
 
// read data file 
npd = readdatafile(file_name, data, npoints); 
 
// compute DD 
autoCorrelation(data, npd, DD, nbins, binb); 
 
// loop through random data files 
for (rf = 0; rf < args.random_count; rf++)  
{ 
    // read random file 
    npr = readdatafile(fname[rf], random, args.npoints); 
    // compute RR and DR in parallel 
    { 
       autoCorrelation(random, npr, RRS, nbins, binb); 
        crossCorrelation(data, npd, random, npr, DRS, nbins, binb); 
    } 
} 
 
// compute TPACF 
for (k = 1; k < nbins+1; k++)  
    if (RRS[k] != 0) w[k] = (100.0 * DD[k] - DRS[k]) / RRS[k] + 1; 

 

Code 2.  Pseudo code of the overall algorithm. 

 

 
Mitrion-C 1.0; 
// options: -cpp 
#define ExtRAM mem bits:128[262144] 
#define NPOINTS 97160 
#define NPOINTS_1 97159 

#define NBINS 32 
 
(ExtRAM, ExtRAM) main (ExtRAM a0, ExtRAM b0)  
{ 
    float:53.11[NBINS] binb = [ 0.99999999999576916210,  
            0.99999999998937272316, 0.99999999997330546453, 
            0.99999999993294641509, 0.99999999983156895311, 
            0.99999999957692020658, 0.99999999893727176126, 
            0.99999999733054723006, 0.99999999329463784559, 
            0.99999998315689186956, 0.99999995769202532081, 
            0.99999989372717357217, 0.99999973305473655039, 
            0.99999932946385972077, 0.99999831568965213968, 
            0.99999576920548627346, 0.99998937273599586284, 
            0.99997330559122843407, 0.99993294712784397404, 
            0.99983157364604546835, 0.99957695008220059929, 
            0.99893745993583771270, 0.99733173469789593302, 
            0.99330212814615548300, 0.98320412044889693437, 
            0.95798951231548890028, 0.89559620527121441835, 
            0.74472199710330100331, 0.40112945079596057374, 
           -0.26150795041456115220, -0.97304487057982380627, 
           -100.0 ]; 
 
    uint:64[NBINS] binsA = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
                                  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]; 
 
    ExtRAM a3 = a0; 
    ExtRAM b3 = b0; 
 
    // loop in one data set 
    (bins, afinal, bfinal) = for (i in <0 .. NPOINTS_1>) 
    { 
        (xi, yi, zi, a1, b1) = readpoint(a0, b0, i); // read next point 
 
        uint:64[NBINS] binsB = binsA;  
        ExtRAM a2 = a0;  
        ExtRAM b2 = b0;  
 
        (binsA, a3, b3) = for(j in <0 .. NPOINTS_1>) 
        { 
            // read next point 
            (xj, yj, zj, a2, b2) = readpoint(a1, b1, j+NPOINTS); 
 
            // compute dot product 
            float:53.11 dot = xi * xj + yi * yj + zi * zj; 
 
            // find what bin it belongs to 
            int:8 indx = findbin(dot, binb); 
 
            // update bin 
            binsB = foreach (bin in binsB by ind)  
                              if (ind == indx) bin + 1 else bin;  
        } (binsB, a2, b2); 
    } (binsA, a3, b3); 
 
    ExtRAM bw = b0; 
    int:64 idx = 0; 
    int:64<NBINS> binsR = reformat(bins, <NBINS>); 
 
    bfinal2 = for (o in binsR)      // write results back to CPU 
    { 
        bits:128 out_val = [ idx, o ]; 
        bw = _memwrite(bfinal, idx, out_val); 
        idx = idx + 1; 
    } bw; 
    bdone2 = _wait(bfinal2); 
} (afinal, bdone2); 
 
// given a value (dot) and a vector of bin boundaries (binb),  
// return bin index the given value belongs to 
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(int:8) findbin(float:53.11 dot, float:53.11[NBINS] binb) 
{ 
    int:8 asas = 0; 
    bool found = false; 
    int:8 res = 0; 
 
    int:8 indx = for (b in binb) 
    { 
        (res, found) = if (dot >= b && !found)  
        { 
            found = true; 
        } (asas, found) 
        else {} (res, found);  
                 
        asas = asas + 1; 
    } res; 
} indx; 
 
// read one point value from the external memory 
(float:53.11, float:53.11, float:53.11, ExtRAM, ExtRAM) 
readpoint(ExtRAM a0, ExtRAM b0, int:64 indx) 
{ 
    (val1, a1) = _memread(a0, indx);  // read x,y 
    (val2, b1) = _memread(b0, indx);  // read z 
 
    float:53.11[2] via1 = val1;      // unpack 
    float:53.11[2] via2 = val2; 
 
    float:53.11 x = via1[0]; 
    float:53.11 y = via1[1]; 
    float:53.11 z = via2[0]; 
} (x, y, z, a1, b1); 

 

Code 3.  Mitrion-C implementation of the cross-

correlation computational kernel. 

 

 

    // allocate memory for BRAM 
    char a0_in[bram_size], b0_in[bram_size], b0_out[bram_size]; 
    long long *bin_val = (long long*)b0_out; 
     
    // copy first dataset 
    for (i = 0; i < n1; i++) { 
        double *xi = (double*)(a0_in+i*16); 
        double *yi = (double*)(a0_in+8+i*16); 
        double *zi = (double*)(b0_in+i*16); 
        *xi = data1[i].x; 
        *yi = data1[i].y; 
        *zi = data1[i].z; 
    } 
    // copy second dataset 
    for (j = 0; j < n2; j++) { 
        double *xj = (double*)(a0_in+j*16 + sizeof(double)*n1*2); 
        double *yj = (double*)(a0_in+8+j*16 + sizeof(double)*n1*2); 
        double *zj = (double*)(b0_in+j*16 + sizeof(double)*n1*2); 
        *xj = data2[j].x; 
        *yj = data2[j].y; 
        *zj = data2[j].z; 
    } 
    // do FPGA work 
    rasclib_cop_send(algorithm_id, "a0_in", a0_in, bram_size); 
    rasclib_cop_send(algorithm_id, "b0_in", b0_in, bram_size); 
    rasclib_cop_go(algorithm_id); 
    rasclib_cop_receive(algorithm_id, "b0_out", b0_out, bram_size); 
    rasclib_cop_commit(algorithm_id, NULL); 
    rasclib_cop_wait(algorithm_id); 
 
    // copy data out, and apply fix for autocorrelation 
    for (k = 0; k < nbins+2; k++) 
        data_bins[k] += (autoCorrelation) ? ((k==0) ? 0 : 
                                   bin_val[2*k+1]/2) : bin_val[2*k+1]; 

 

Code 4.  Host wrapper pseudo code. 

 


