
NCSA GPU programming tutorial
day 4

Dylan Roeh

droeh2@illinois.edu

Introduction

 Application: Two Point Angular Correlation Function

 The goal is, given a large set D of unit vectors, to compute a
histogram of ω(θ) for various values of θ

 To do so, we first compute a large number of dot products and
create a number of histograms: DD, DR

i
, RR

i
. Each R

i

represents a large set of random unit vectors. DD is the
histogram of all dot products of pairs of elements in D, and
similarly with the others

 Then perform some operations on these histograms to compute
a histogram of ω(θ)

 Jackknife resampling also required

1

1

21

2

2

i

R

i

RDD

RR
n

DR
nn

DD
n

…

0.001

0.01

0.1

1

0.01 0.1 1 10

lo
g 1

0
(ω

(θ
))

log10(θ) (degrees)

observed data random dataset #1 random dataset #100

Two-point angular
correlation function

Two Point Angular Correlation
Function

Overall Code Organization

// pre-compute bin boundaries, binb

load_file(data); // load data from disk (~100K-1M points on a sphere)

doCompute (data, npd, data, npd, 1, DD, binb, nbins); // compute DD

for (i = 0; i < random_count; i++) // loop through random data files

{

load_file(random[i]); // load data from disk (~100K-1M points on a sphere)

doCompute (random[i], npr[i], random[i], npr[i], 1, RRS, binb, nbins); // compute RR

doCompute (data, npd, random[i], npr[i], 0, DRS, binb, nbins); // compute DR

}

for (k = 0; k < nbins; k++) { // compute w

w[k] = (random_count * 2*DD[k] - DRS[k]) / RRS[k] + 1.0;

}

doCompute kernel

void doCompute(struct cartesian *data1, int n1, struct cartesian *data2, int n2, int doSelf, long long
**data_bins, int nbins, double *binb, int njk) {

if (doSelf) { n2 = n1; data2 = data1; } // setup pointers for doSelf compute mode

for (i = 0; i < ((doSelf) ? n1-1 : n1); i++) { // loop over points in the first dataset

double xi = data1[i].x; double yi = data1[i].y; double zi = data1[i].z; int jk = data1[i].jk;

for (j = ((doSelf) ? i+1 : 0); j < n2; j++) {// loop over points in the second dataset

double dot = xi * data2[j].x + yi * data2[j].y + zi * data2[j].z; // compute dot product

int indx, k = nbins;

if (dot >= binb[0]) indx = 0; // data_bins[0] += 1; // find bin it belongs to

else { while (dot > binb[k]) k--; indx = k+1; // data_bins[k+1] += 1; }

for (l = 0; l < njk; l++) // update all samples

if (l != jk) data_bins[l][indx] += 1;

}

}

}

pi

pj

q0 q1 q2 q3 q4 q5

Applicability to GPUs

 The major parallel aspects of the algorithm are the
computation of the histogram bin assignments and the
actual computation of the histograms

 The former is fairly straightforward, as it essentially
requires taking a very large number of independent dot
products, and assigning bins based solely on the result of
said dot products

 The latter can be implemented in a straightforward fashion,
but achieving good performance requires more careful
consideration

 Other parallelism exists, such as in looping over all values
of i. This is best taken advantage of in a multi-GPU system

Implementation Overview

 The algorithm is broken up into two major kernels

 The first takes two sets of 3-vectors, computes the dot
product of every pair of vectors, and writes histogram
bin assignments to memory

 The second reads bin assignments from memory and
constructs a histogram

 This actually uses a third kernel; a helper kernel to
compile sub-histograms in device memory

 Histogram kernel is only called on elements with the same
jackknife index; by doing this we can reconstruct the full
histogram and all jackknife histograms without many
redundant calls to the histogram kernel

Difficulties

 The first difficulty which arises is the problem of computing
a bin assignment from the result of a dot product. The
CPU version implements both linear and binary searches,
as well as a direct bin computation formula

 Direct computation seems as though it would be best;
but invocation of logarithm and arccosine render it
slower than the searches. Between binary and linear,
linear turns out to be best, likely due to “top” bins
containing a vast majority of elements. The bias
reduces the likely number of control paths as well as
the number of ifs to be executed within a given control
path.

Difficulties (cont.)

 The second difficulty is efficiently implementing a
histogram algorithm.

 Avoiding race conditions in global memory or poor
global memory bandwidth requires that we construct
per-block histograms

 Avoiding race conditions within shared memory is only
possible by creating per-thread histograms in shared
memory

 Must be careful not to exceed the maximum shared
memory usage

 Some trickery is required to avoid bank conflicts

Bin Computation Kernel

 This kernel takes in two lists of vectors and computes the
dot product of every pair of vectors, and then each dot
product's bin assignment. The bin assignments are then
written to a grid in device memory

 In this implementation it is assumed that the lists both
have 16,384 elements, but this is not necessary for the
algorithm in general

 Each block has 128 threads, and each thread computes
and outputs 128 bin assignments

 Number of bins is assumed to be small enough that 4 bin
assignments can be packed in an integer

Bin Computation Kernel (cont)

 As mentioned previously, a linear search proves to be the
best method for computing a bin assignment given a dot
product

 Note that, when computing DD or RR
i
, it suffices to

compute bin assignments for fewer than half of the pairs

 Doing this introduces branch divergence only in blocks
for which blockIdx.x = blockIdx.y; the rest must either
compute all bin assignments or no bin assignments

 This also removes troubling elements on the main
diagonal, which tend to be incorrectly binned in single
precision implementations

 Note that we must reserve a histogram bin for “ignored”
elements

Histogram Kernel

 The histogram kernel (based on an nVidia whitepaper)
functions by first computing per-thread sub-histograms,
then compiling those into per-block sub-histograms and
writing them to global memory.

 Following this, a small helper kernel compiles the per-block
sub-histograms into a smaller number of sub-histograms if
necessary. Compiling the small number of remaining sub-
histograms into a full histogram is left to the CPU

 We could eliminate the helper kernel on Compute
Capability 1.1 or greater GPUs with the use of atomic
memory operations, but doing so results in some loss of
performance

Histogram Kernel (cont)

 The per-thread sub-histograms must be stored in shared
memory

 Given that, we want to have a reasonable number of
threads without putting overly harsh restrictions on the
number of bins or maximum capacity of a given bin

 Using one byte to represent a histogram bin allows
each thread to histogram up to 255 elements

 Doing this we can achieve 64 bins with 192 threads
without over-running shared memory

 64 is plenty for this application. 128 bins could be
achieved with the same algorithm, but would require a
reduction to 64 threads

Jackknife Resampling

 Part of the goal of this implementation was to include
jackknife resampling, in which we compute not only the full
histogram for ω(θ), but also a number of sub-histograms
(jackknives) which are to be used in error bounds

 Each element is removed from precisely one jackknife

 The obvious implementation is to add each element to the
full histogram as well as every jackknife except that which
it is removed from

 Unfortunately, this requires either far too many bins
(330 if 30 bins and 10 jackknives are used, as in the
CPU version) or many redundant calls to the histogram
kernel

Jackknife Resampling (cont)

 An efficient solution is to use “inverse” jackknives. The ith

inverse jackknife is the histogram of elements which are
removed from the ith jackknife

 The full histogram and every jackknife can be easily
reconstructed

 Every element goes through the histogram kernel
precisely once

 May introduce some calls to the histogram kernel which
are not necessary without jackknife resampling, but the
histogram kernel does not have much overhead, and
the number of extra calls is relatively small

Multi-GPU Implementation

 As mentioned earlier, the i-loop can be parallelized to
allow for easy multi-GPU implementation. This can be
done with pthreads, but the current implementation uses
MPI

 Using multiple GPUs in MPI is easy once each process
has its own GPU

 Unfortunately, assuring this can be tricky. The simplest
method is to use the same number of GPUs on every
machine, and ensure that process IDs on a given
machine are sequential. With these assumptions, one
can simply use the process ID modulo the number of
GPUs per machine to assign a unique GPU to each
process

