
Introduction to GPU
Programming

Volodymyr (Vlad) Kindratenko
Innovative Systems Laboratory @ NCSA

Institute for Advanced Computing
Applications and Technologies (IACAT)

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Part II

• GPU programing model

• Hands-on: Mandelbrot set fractal renderer

– Reference implementation

– GPU implementation

2
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

CUDA Programming Model

• A CUDA kernel is executed by
an array of threads
– All threads run the same code (SPMD)

– Each thread has an ID that it uses
to compute memory addresses and
make control decisions

• Threads are arranged as a grid of thread blocks
– Threads within

a block have access
to a segment of
shared memory

3

…

float x = input[threadID];

float y = func(x);

output[threadID] = y;

…

threadID

Grid

Thread Block 0

Shared memory

Thread Block 1

Shared memory

Thread Block N-1

Shared memory

…

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Kernel Invocation Syntax

4

Grid

Thread Block 0

Shared memory

Thread Block 1

Shared memory

Thread Block N-1

Shared memory

…

grid & thread block dimensionality

vecAdd<<<32, 512>>>(devPtrA, devPtrB, devPtrC);

int i = blockIdx.x * blockDim.x + threadIdx.x;

thread ID within a thread block number of threads per block block ID within a grid

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Mapping Threads to the Hardware

• Blocks of threads are transparently
assigned to SMs

– A block of threads executes on one
SM & does not migrate

– Several blocks can reside
concurrently on one SM

• Blocks must be independent

– Any possible interleaving of blocks
should be valid

– Blocks may coordinate but not
synchronize

– Thread blocks can run in any order

5

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Each block can execute in any
order relative to other blocks.

time

Slide is courtesy of NVIDIA V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

CUDA Programming Model

• A kernel is executed as a
grid of thread blocks
– Grid of blocks can be 1 or 2-

dimentional
– Thread blocks can be 1, 2, or

3-dimensional

• Different kernels can have
different grid/block
configuration

• Threads from the same
block have access to a
shared memory and their
execution can be
synchronized

6

Slide is courtesy of NVIDIA

Device

Grid 2

Host

Kernel

1

Kernel

2

Block (1, 1)

Thread

(0,1,0)

Thread

(1,1,0)

Thread

(2,1,0)

Thread

(3,1,0)

Thread

(0,0,0)

Thread

(1,0,0)

Thread

(2,0,0)

Thread

(3,0,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

• Global (device) memory

– Accessible by all threads as well as host (CPU)

– Data lifetime is from allocation to deallocation

7

Host memory

Device 0
memory

Device 1
memory

cudaMemcpy()

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

• Global (device) memory

8

Kernel 0

Thread Block 0 Thread Block 1 Thread Block N-1

…

Kernel 1

Thread Block 0 Thread Block 1 Thread Block N-1

…

Per-device
Global

Memory

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

• Local storage
– Each thread has own local

storage

– Mostly registers (managed by
the compiler)

– Data lifetime = thread lifetime

• Shared memory
– Each thread block has own

shared memory

• Accessible only by threads
within that block

– Data lifetime = block lifetime

9

Thread Block
Per-block

shared
memory

Per-thread
local memory

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

• 1D grid

– 2 thread blocks

• 1D block

– 2 threads

10

Grid of 2 thread blocks

block 0

thread 0 thread 1

registers registers

Global memory

Constant memory

Shared memory

block 1

thread 0 thread 1

registers registers

Shared memory

Host memory

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

GPU Memory Hierarchy

11

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

Host

CPU

chipset

DRAM

Device

DRAM

local
global

constant
texture

GPU
Multiprocessor

Multiprocessor
Multiprocessor

registers shared
memory

constant and texture caches

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Porting Mandelbrot set fractal
renderer to CUDA

• Source is in ~/tutorial/src2

– fractal.c – reference C implementation

– Makefile – make file

– fractal.cu.reference – CUDA implementation for
reference

12
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Getting started

• cd tutorial/src2

• make cpu

• ./fractal_cpu

• make convert

• copy fractal.bmp to your desktop

• display fractal.bmp on your desktop

13
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Reference C Implementation

14

void makefractal_cpu(unsigned char *image, int width, int height, double xupper,
 double xlower, double yupper, double ylower)
{
 int x, y;

 double xinc = (xupper - xlower) / width;
 double yinc = (yupper - ylower) / height;

 for (y = 0; y < height; y++)
 {
 for (x = 0; x < width; x++)
 {
 image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc));
 }
 }
}

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Reference C Implementation

15

inline unsigned char iter(double a, double b)
{
 unsigned char i = 0;
 double c_x = 0, c_y = 0;
 double c_x_tmp, c_y_tmp;
 double D = 4.0;

 while ((c_x*c_x+c_y*c_y < D) && (i++ < 255))
 {
 c_x_tmp = c_x * c_x - c_y * c_y;
 c_y_tmp = 2* c_y * c_x;
 c_x = a + c_x_tmp;
 c_y = b + c_y_tmp;
 }

 return i;
}

The Mandelbrot set is

generated by iterating complex

function z2 + c, where c is a

constant:

z1 = (z0)
2 + c

z2 = (z1)
2 + c

z3 = (z2)
2 + c

and so forth. Sequence z0, z1,

z2,... is called the orbit of z0

under iteration of z2 + c. We

stop iteration when the orbit

starts to diverge, or when a

maximum number of iterations

is done.

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

CUDA Kernel Implementation

16

__global__ void makefractal_gpu(unsigned char *image, int width, int height, double
xupper, double xlower, double yupper, double ylower)
{
 int x = blockIdx.x;
 int y = blockIdx.y;

 int width = gridDim.x;
 int height = gridDim.y;

 double xupper=-0.74624, xlower=-0.74758, yupper=0.10779, ylower=0.10671;

 double xinc = (xupper - xlower) / width;
 double yinc = (yupper - ylower) / height;

 image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc));
}

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

CUDA Kernel Implementation

17

inline __device__ unsigned char iter(double a, double b)
{
 unsigned char i = 0;
 double c_x = 0, c_y = 0;
 double c_x_tmp, c_y_tmp;
 double D = 4.0;

 while ((c_x*c_x+c_y*c_y < D) && (i++ < 255))
 {
 c_x_tmp = c_x * c_x - c_y * c_y;
 c_y_tmp = 2* c_y * c_x;
 c_x = a + c_x_tmp;
 c_y = b + c_y_tmp;
 }

 return i;
}

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Host Code

18

 int width = 1024;
 int height = 768;
 unsigned char *image = NULL;
 unsigned char *devImage;

 image = (unsigned char*)malloc(width*height*sizeof(unsigned char));
 cudaMalloc((void**)&devImage, width*height*sizeof(unsigned char));

 dim3 dimGrid(width, height);
 dim3 dimBlock(1);

 makefractal_gpu<<<dimGrid, dimBlock>>>(devImage);

 cudaMemcpy(image, devImage, width*height*sizeof(unsigned char), cudaMemcpyDeviceToHost);

 free(image);
 cudaFree(devImage);

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Few Examples

• xupper=-0.74624

• xlower=-0.74758

• yupper=0.10779

• ylower=0.10671

• CPU time: 2.27 sec

• GPU time: 0.29 sec

• xupper=-0.754534912109

• xlower=-.757077407837

• yupper=0.060144042969

• ylower=0.057710774740

• CPU time: 1.5 sec

• GPU time: 0.25 sec

19
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Lab/Homework Exercises

• Exercise 1: Modify fractal code to improve
efficiency

– hint: launch multiple threads per block

20
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

Documentation

• NVIDIA’s documentation
• http://developer.nvidia.com/object/gpucomputing.html
– Programming Guide
– Best Practices Gide
– Reference Manual

• CUDA C SDK Code Samples
– http://developer.nvidia.com/object/cuda_3_2_downloads.html

• Books
– David Kirk, Wen-mei W. Hwu, Programming Massively Parallel

Processors: A Hands-on Approach, Morgan Kaufmann, 2010
– Jason Sanders, Edward Kandrot, CUDA by Example: An

Introduction to General-Purpose GPU Programming, Addison-
Wesley, 2010

21
V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt

