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Part II 

• GPU programing model 

• Hands-on: Mandelbrot set fractal renderer 

– Reference implementation 

– GPU implementation 
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CUDA Programming Model 

• A CUDA kernel is executed by  
an array of threads 
– All threads run the same code (SPMD) 

– Each thread has an ID that it uses  
to compute memory addresses and 
make control decisions 

• Threads are arranged as a grid of thread blocks 
– Threads within 

a block have access 
to a segment of 
shared memory 
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… 

float x = input[threadID]; 

float y = func(x); 

output[threadID] = y; 

… 

threadID 

Grid 

Thread Block 0 

Shared memory 

Thread Block 1 

Shared memory 

Thread Block N-1 

Shared memory 

… 
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Kernel Invocation Syntax 

4 

Grid 

Thread Block 0 

Shared memory 

Thread Block 1 

Shared memory 

Thread Block N-1 

Shared memory 

… 

grid & thread block dimensionality 

vecAdd<<<32, 512>>>(devPtrA, devPtrB, devPtrC); 

int i = blockIdx.x * blockDim.x + threadIdx.x;  

thread ID within a thread block number of threads per block block ID within a grid 

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt 



Mapping Threads to the Hardware 

• Blocks of threads are transparently 
assigned to SMs 

– A block of threads executes on one 
SM & does not migrate 

– Several blocks can reside 
concurrently on one SM 

• Blocks must be independent 

– Any possible interleaving of blocks 
should be valid 

– Blocks may coordinate but not 
synchronize 

– Thread blocks can run in any order 
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Device 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Kernel grid 

Block 0 Block 1 

Block 2 Block 3 

Block 4 Block 5 

Block 6 Block 7 

Device 

Block 0 Block 1 Block 2 Block 3 

Block 4 Block 5 Block 6 Block 7 

Each block can execute in any 
order relative to other blocks.  

time 
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CUDA Programming Model 

• A kernel is executed as a 
grid of thread blocks 
– Grid of blocks can be 1 or 2-

dimentional 
– Thread blocks can be 1, 2, or 

3-dimensional 

• Different kernels can have 
different grid/block 
configuration 

• Threads from the same 
block have access to a 
shared memory and their 
execution can be 
synchronized 
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GPU Memory Hierarchy 

• Global (device) memory 

– Accessible by all threads as well as host (CPU) 

– Data lifetime is from allocation to deallocation 
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Host memory 

Device 0 
memory 

Device 1 
memory 

cudaMemcpy() 

V. Kindratenko, Introduction to GPU Programming (part II), December 2010, The American University in Cairo, Egypt 



GPU Memory Hierarchy 

• Global (device) memory 
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Kernel 0 

Thread Block 0 Thread Block 1 Thread Block N-1 

… 

Kernel 1 

Thread Block 0 Thread Block 1 Thread Block N-1 

… 

Per-device 
Global 

Memory 
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GPU Memory Hierarchy 

• Local storage 
– Each thread has own local 

storage 

– Mostly registers (managed by 
the compiler) 

– Data lifetime = thread lifetime 

• Shared memory 
– Each thread block has own 

shared memory 

• Accessible only by threads 
within that block 

– Data lifetime = block lifetime 
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Thread Block 
Per-block 

shared 
memory 

Per-thread 
local memory 
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GPU Memory Hierarchy 

• 1D grid 

– 2 thread blocks 

• 1D block 

– 2 threads 
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Grid of 2 thread blocks 

block 0 

thread 0 thread 1 

registers registers 
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Shared memory 
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GPU Memory Hierarchy 
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Memory Location Cached Access Scope Lifetime 

Register On-chip N/A R/W One thread Thread 

Local Off-chip No R/W One thread Thread 

Shared On-chip N/A R/W All threads in a block Block 

Global Off-chip No R/W All threads + host Application 

Constant Off-chip Yes R All threads + host Application 

Texture Off-chip Yes R All threads + host Application 

Host 

CPU 

chipset 

DRAM 

Device 

DRAM 
 

local 
global 

 
constant 
texture 

GPU 
Multiprocessor 

Multiprocessor 
Multiprocessor 

registers shared 
memory 

constant and texture caches 
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Porting Mandelbrot set fractal 
renderer to CUDA 

• Source is in ~/tutorial/src2 

– fractal.c – reference C implementation 

– Makefile – make file 

– fractal.cu.reference – CUDA implementation for 
reference 
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Getting started 

• cd tutorial/src2 

• make cpu 

• ./fractal_cpu 

• make convert 

 

• copy fractal.bmp to your desktop 

• display fractal.bmp on your desktop 
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Reference C Implementation 
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void makefractal_cpu(unsigned char *image, int width, int height, double xupper, 
 double xlower, double yupper, double ylower) 
{ 
    int x, y; 
 
    double xinc   = (xupper - xlower) / width; 
    double yinc   = (yupper - ylower) / height; 
 
    for (y = 0; y < height; y++)  
    { 
        for (x = 0; x < width; x++) 
        { 
            image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc)); 
        } 
    } 
} 
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Reference C Implementation 
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inline unsigned char iter(double a, double b) 
{ 
    unsigned char i = 0; 
    double c_x = 0, c_y = 0; 
    double c_x_tmp, c_y_tmp; 
    double D = 4.0; 
 
    while ((c_x*c_x+c_y*c_y < D) && (i++ < 255)) 
    { 
        c_x_tmp = c_x * c_x - c_y * c_y; 
        c_y_tmp = 2* c_y * c_x; 
        c_x = a + c_x_tmp; 
        c_y = b + c_y_tmp; 
    } 
 
    return i; 
} 

The Mandelbrot set is 

generated by iterating complex 

function z2 + c, where c is a 

constant: 

 

z1 = (z0)
2 + c  

z2 = (z1)
2 + c  

z3 = (z2)
2 + c  

 

and so forth. Sequence z0, z1, 

z2,...  is called the orbit of z0 

under iteration of z2 + c. We 

stop iteration when the orbit 

starts to diverge, or when a 

maximum number of iterations 

is done. 
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CUDA Kernel Implementation 
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__global__ void makefractal_gpu(unsigned char *image, int width, int height, double 
xupper, double xlower, double yupper, double ylower) 
{ 
    int x = blockIdx.x; 
    int y = blockIdx.y; 
 
    int width = gridDim.x; 
    int height = gridDim.y; 
 
    double xupper=-0.74624, xlower=-0.74758, yupper=0.10779, ylower=0.10671; 
 
    double xinc = (xupper - xlower) / width; 
    double yinc = (yupper - ylower) / height; 
 
    image[y*width+x] = iter((xlower + x*xinc), (ylower + y*yinc)); 
} 
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CUDA Kernel Implementation 
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inline __device__ unsigned char iter(double a, double b) 
{ 
    unsigned char i = 0; 
    double c_x = 0, c_y = 0; 
    double c_x_tmp, c_y_tmp; 
    double D = 4.0; 
 
    while ((c_x*c_x+c_y*c_y < D) && (i++ < 255)) 
    { 
        c_x_tmp = c_x * c_x - c_y * c_y; 
        c_y_tmp = 2* c_y * c_x; 
        c_x = a + c_x_tmp; 
        c_y = b + c_y_tmp; 
    } 
 
    return i; 
} 
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Host Code 

18 

    int width = 1024; 
    int height = 768; 
    unsigned char *image = NULL; 
    unsigned char *devImage; 
 
    image = (unsigned char*)malloc(width*height*sizeof(unsigned char)); 
    cudaMalloc((void**)&devImage, width*height*sizeof(unsigned char));  
 
    dim3 dimGrid(width, height); 
    dim3 dimBlock(1); 
 
    makefractal_gpu<<<dimGrid, dimBlock>>>(devImage); 
 
    cudaMemcpy(image, devImage, width*height*sizeof(unsigned char), cudaMemcpyDeviceToHost);  

 
    free(image); 
    cudaFree(devImage);  
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Few Examples 

• xupper=-0.74624 

• xlower=-0.74758 

• yupper=0.10779 

• ylower=0.10671 

 

• CPU time: 2.27 sec 

• GPU time: 0.29 sec 

• xupper=-0.754534912109 

• xlower=-.757077407837 

• yupper=0.060144042969 

• ylower=0.057710774740 

 

• CPU time: 1.5 sec 

• GPU time: 0.25 sec 
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Lab/Homework Exercises 

• Exercise 1: Modify fractal code to improve 
efficiency 

– hint: launch multiple threads per block 
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Documentation 

• NVIDIA’s documentation 
• http://developer.nvidia.com/object/gpucomputing.html 
– Programming Guide 
– Best Practices Gide 
– Reference Manual 

• CUDA C SDK Code Samples 
– http://developer.nvidia.com/object/cuda_3_2_downloads.html 

• Books 
– David Kirk, Wen-mei W. Hwu, Programming Massively Parallel 

Processors: A Hands-on Approach, Morgan Kaufmann, 2010 
– Jason Sanders, Edward Kandrot, CUDA by Example: An 

Introduction to General-Purpose GPU Programming, Addison-
Wesley, 2010 
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