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Research Objectives

• Evaluate suitability of SGI RASC RC100 

platform for scientific computing applications

– Focus on applications that require double-precision 

floating-point arithmetic

• Evaluate suitability of Mitrion SDK as a 

development platform for SGI RASC RC100 

hardware

– Language flexibility

– Completeness of hardware support

– Suitability for complex scientific codes
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Research Approach

• Use an existing HPC application as a test case

– Cosmology application as the driver

– With known performance characteristics on other 

platforms

• Implement the application in Mitrion-C 

targeting RC100 platform

• Evaluate the implementation, implementation 

effort, and resulting performance

– In relation to the hardware and software used to 

implement and run the code

National Center for Supercomputing Applications



Presentation Outline

• Background information

– SGI RASC RC100 platform overview

– Mitrion-C application development framework

– Testcase application

• FPGA kernel design and implementation

– Single-core kernel

– Dual-core kernel

• Evaluation discussion

– SGI RASC RC100 blade

– Mitrion SDK for RC100
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SGI Altix 350 with RC100 blade

• A standalone, single-module SGI Altix 350

– dual-1.4 GHz Intel Itanium 2 system

– 4 GBs of physical memory.

• A single dual-blade chassis with one RC100 

blade

– attached to the host system via a NUMAlink 4 

interconnect
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SGI RASC RC100 blade

• Third-generation Reconfigurable Application-Specific Computing 

(RASC) hardware module

– Two computational FPGAs, and a special-purpose loader FPGA

– Two peer-to-peer I/O (TIO) ASICs

– Up to 10 QDR SRAM memory modules, configured as two banks to match 

the NUMAlink 4 channel bandwidth (3.2 Gbyte/sec) to 

the memories (2x1.6 Gbyte/sec).
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RASC RC100 blade FPGA

• Xilinx Virtex 4 LX200 (XC4VLX200-FF1513-10) chips

– 200,448 logic cells

– 336 Block RAM/FIFOs

• 6,048 kbits of total BRAM

– 96 DSP48 slices

– and 960 user I/O pins

– maximum clock frequency,

as implemented in the

RC100 blade, is 200 MHz

• A portion of each chip is allocated to the RASC Core 

Services logic with the rest of the logic allocated to the 

user algorithm block
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RASC Core Services

• IP cores provided by SGI

– interface between the TIO chip and SRAMs 

attached to the FPGA

• user algorithm block has access to two dual-port 

memory resources, each is 128-bit wide and up to 1 

million words deep (16 MB per port per bank)

– provide memory-mapped register (MMR) inputs 

and algorithm control logic

• user algorithm block has direct access to MMR inputs 

and access to SRAM via external memory logic 

implemented as part of the RASC Core Services
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RASC software stack

• User application interacts with the device either via the co-

processor or algorithm layer, their use is mutually exclusive

– the Co-Processor (COP) layer: an interface to work with individual devices

– the algorithm layer, built on top of the COP layer, treats a collection of 

devices as a single logical device
• RASC kernel driver

• Device Manager is a user-space utility for bitstream management

– Implemented on top of device library
• FPGA bitstream download driver
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COP layer API usage example

• // allocate system memory
– char a0_in[bram_size];

– char b0_in[bram_size];

– char b0_out[bram_size];

• // populate with data
– double *xi = (double*)(a0_in+i*16);

– *xi = data1[i].x;

• // do FPGA work
– rasclib_cop_send(algorithm_id, "a0_in", a0_in, bram_size);

– rasclib_cop_send(algorithm_id, "b0_in", b0_in, bram_size);

– rasclib_cop_go(algorithm_id);

– rasclib_cop_receive(algorithm_id, "b0_out", b0_out, bram_size);

– rasclib_cop_commit(algorithm_id, NULL);

– rasclib_cop_wait(algorithm_id);

• // process results
– long long *bin_val = (long long*)b0_out;

– res = bin_val[2*k+1];
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Mitrion SDK for RC100

• Framework in which applications for  RC100 can be 

implemented

– Mitrion-C language

– Mitrion-C compiler

– Functional simulator/

debugger

– Mitrion Virtual

Processor 

and processor 

configurator

– Mitrion Host 

Abstraction 

Layer (MITHAL)

library

National Center for Supercomputing Applications

   Mitrion SDK

Source code (.mitc)

Mitrion-C compiler

Virtual processor machine code

Simulator/debugger Processor configurator

Processor 

architecture

Hardware design  (.vhdl)



Mitrion-C and Virtual Processor

• Mitrion-C

– Similar to C about as much as Java is 

similar to C

– Implicitly parallel

– Describes data dependencies rather than 

order-of-execution

– Allows fine-grain parallelism to be 

described

– Syntactic support to make design  

decisions regarding parallelism

– Designed to preserve and reveal 

parallelism in the algorithm

• Mitrion Virtual Processor

– A massively parallel high-performance 

processor for FPGAs that executes 

software written in the Mitrion-C 

programming language

– Processor’s architecture follows a cluster 

model, placing all processing nodes 

within an FPGA and creating an ad-hoc 

network between them

• Mitrion-C 2D dot product code example

Mitrion-C 1.0;

// Options: -cpp

#define NUM_WORDS 1024

#define NUM_WORDS_1 1023

#define ExtRam mem bits:128[8192]

(ExtRam, ExtRam) main(ExtRam mem_a, ExtRam mem_b) 

{

(mem_a1, mem_b1) = foreach(i in <0.. NUM_WORDS_1>) 

{

(vars, mem_a1) = _memread(mem_a, i);

float:24.8[4] var = vars;

a = var[0];

b = var[1];

c = var[2];

d = var[3];

res = a * b + c * d;

bits:32 res_bits32 = res;

bits:128 res_bits128 = res_bits32;

mem_b1 = _memwrite(mem_b, i, res_bits128);

} (mem_a1, mem_b1);

(mem_a_final, mem_b_final) = _wait(mem_a1, mem_b1);

} (mem_a_final, mem_b_final);
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Mitrion-C Simulator/debugger

---------- Summary: Bandwidth Graph ---------------

ROOT

|  l: 1067.0 ch: 1024 d: 1.042

|    L  limited. Relaxed ch 1067 l 1067

|    body l: 1067 ch: 1024 relaxed ch: 1067

|--1

| iterations: 1024   bottleneck: 1.042

|   main/foreach<1024>

|  l: 1067.0 ch: 1024 d: 1.042

|    BW limited. Relaxed ch 1067 l 1067

|    body ch: 1.0 relaxed ch: 1

-------- End Summary: Bandwidth Graph --------------

----[   Execution time: 10.670us, 1067 steps@100MHz

----[   Executions per second: 93720.712

---------- Summary ---------------------------------

Memories: 

External: 8192x128 1 readers and 0 writers. 

External: 8192x128 0 readers and 1 writers. 

---------- End Summary -----------------------------

---------- Summary: Hardware resources used --------

Target FPGA is Xilinx Virtex-II XC2V6000-6FF1517C

Target Clock Frequency is 100MHz

18861 Flip Flops out of 67584 = 27% FlipFlop usage

128 16-bit shiftregisters

25 BlockRAMs out of 144 = 17% BlockRAM usage

8 MULT18X18s out of 144 = 5% MULT18X18 usage

-------- End Summary: Hardware resources used ------
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Testcase application: TPACF

• TPACF, denoted as (), is the 
frequency distribution of 
angular separations 
between celestial objects in 
the interval (,  + )
–  is the angular distance 

between two points

• Example
– Red Points are, on average, 

randomly distributed, black 
points are clustered

– Red points: ()=0

– Black points: ()>0

– Can vary as a function of 
angular distance,  (blue circles)

– Red: ()=0 on all scales

– Black: () is larger on smaller 
scales



National Center for Supercomputing Applications

TPACF Computational Kernel

• The angular correlation function is calculated using the estimator 

derived by Landy & Szalay (1993): 

• where DD() and RR() are the angular separation distributions 

(autocorrelation) of the data and random points, respectively, and 

DR() is the angular separation distribution (cross-correlation) 

between the data and random points

• The problem of computing angular separation distributions can be 

expressed as follows:

– Input: Set of points x1, .., xn distributed on the surface of a sphere, and a small 

number M of bins: [q0, q1), [q1, q2), .., [qM-1, qM].

– Output: For each bin, the number of unique pairs of points (xi, xj) for which the 

angular distance is in the respective bin: Bl = |{ij: ql-1 <= xi·xj < ql}|.

)(

)()(2)(
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
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Reference C implementation

for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++)

{

double xi = data1[i].x;

double yi = data1[i].y;

double zi = data1[i].z;

for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++)

{

double dot = xi * data2[j].x + yi * data2[j].y + * data2[j].z;

// binary search

min = 0;  max = nbins;

while (max > min+1)  

{

k = (min + max) / 2;

if (dot >= binb[k])  max = k;

else min = k;

};

if (dot >= binb[min])  data_bins[min] += 1;

else if (dot < binb[max]) data_bins[max+1] += 1;

else data_bins[max] += 1;

}

}
National Center for Supercomputing Applications
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FPGA Kernel Design

• Data storage/access 

requirements

– Need to be able to read 

all three coordinates for a 

given point in one clock 

cycle

– Need to fit both datasets 

in SRAM

– Need to store output 

results in SRAM (at the 

end of the calculations)
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Kernel re-written in Mitrion-C

Mitrion-C 1.0;

// options: -cpp

#define ExtRAM mem bits:128[262144]

#define NPOINTS 97160

#define NPOINTS_1 97159

#define NBINS 32

(ExtRAM, ExtRAM) main (ExtRAM a0, ExtRAM b0) 

{

float:53.11[NBINS] binb = [ 0.99999999999576916210, 0.99999999998937272316, 0.99999999997330546453,

0.99999999993294641509, 0.99999999983156895311, 0.99999999957692020658, 0.99999999893727176126,

0.99999999733054723006, 0.99999999329463784559, 0.99999998315689186956, 0.99999995769202532081,

0.99999989372717357217, 0.99999973305473655039, 0.99999932946385972077, 0.99999831568965213968,

0.99999576920548627346, 0.99998937273599586284, 0.99997330559122843407, 0.99993294712784397404,

0.99983157364604546835, 0.99957695008220059929, 0.99893745993583771270, 0.99733173469789593302,

0.99330212814615548300, 0.98320412044889693437, 0.95798951231548890028, 0.89559620527121441835,

0.74472199710330100331, 0.40112945079596057374, -0.26150795041456115220, -0.97304487057982380627,

-100.0 ];

uint:64[NBINS] binsA = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ];

ExtRAM a3 = a0;

ExtRAM b3 = b0;
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Kernel re-written in Mitrion-C

// loop in one data set

(bins, afinal, bfinal) = for (i in <0 .. NPOINTS_1>)

{

(xi, yi, zi, a1, b1) = readpoint(a0, b0, i); // read next point

uint:64[NBINS] binsB = binsA; 

ExtRAM a2 = a0; 

ExtRAM b2 = b0; 

(binsA, a3, b3) = for(j in <0 .. NPOINTS_1>)

{

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+NPOINTS); // read next point

float:53.11 dot = xi * xj + yi * yj + zi * zj; // compute dot product

int:8 indx = findbin(dot, binb); // find what bin it belongs to

// update bin

binsB = foreach (bin in binsB by ind) if (ind == indx) bin + 1 else bin; 

} (binsB, a2, b2);

} (binsA, a3, b3);
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Kernel re-written in Mitrion-C

ExtRAM bw = b0;

int:64 idx = 0;

int:64<NBINS> binsR = reformat(bins, <NBINS>);

bfinal2 = for (o in binsR)      // write results back to CPU

{

bits:128 out_val = [ idx, o ];

bw = _memwrite(bfinal, idx, out_val);

idx = idx + 1;

} bw;

bdone2 = _wait(bfinal2);

} (afinal, bdone2);
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FPGA Resources Utilization

Total 

available

Mitrion-C 

estimate

After place 

and route

Slices 89,088 42,346 (47%)

Flip Flops 178,176 51,327 (29%) 50,128 (28%)

LUTs 178,176 48,724 (27%)

BlockRAMs 336 29 (8%) 27 (8%)

DSP48s 96 48 (50%) 48 (50%)

P&R time 5 hours 24 minutes 7 seconds
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Dual kernel in Mitrion-C

(bins1, bins2, afinal, bfinal) = for (i in <0 .. 48579>)

{

(xi1, yi1, zi1, a0a, b0a) = readpoint(a0, b0, i*2); // read next 2 points

(xi2, yi2, zi2, a1, b1) = readpoint(a0a, b0a, i*2+1);

/* ... Omitted code … */

(binsA1, binsA2, a3, b3) = for(j in <0 .. 97159>)

{

// read next point

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+97160);

float:53.11 dot1 = xi1 * xj + yi1 * yj + zi1 * zj;   // compute dot product

float:53.11 dot2 = xi2 * xj + yi2 * yj + zi2 * zj;

int:8 indx1 = findbin(dot1, binb); // find what bin it belongs to

int:8 indx2 = findbin(dot2, binb);

binsB1 = foreach (bin in binsB1 by ind) if (ind == indx1) bin + 1 else bin; // update bin

binsB2 = foreach (bin in binsB2 by ind) if (ind == indx2) bin + 1 else bin;

} (binsB1, binsB2, a2, b2);

} (binsA1, binsA2, a3, b3);
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Dual kernel in Mitrion-C

// write results back to CPU

mem bits:128[262144] bw = b0;

int:64 idx = 0;

int:64<32> binsR1 = reformat(bins1, <32>);

int:64<32> binsR2 = reformat(bins2, <32>);

bfinal2 = for (o1, o2 in binsR1, binsR2)

{

int:64 total_count = o1 + o2;

bits:128 out_val = [ idx, total_count ];

bw = _memwrite(bfinal, idx, out_val);

idx = idx + 1;

} bw;

bdone2 = _wait(bfinal2);

} (afinal, bdone2);
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FPGA Resources Utilization
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Total 

available

Mitrion-C 

estimate

After place 

and route

Slices 89,088 70,301 (78%)

Flip Flops 178,176 80,490 (45%) 82,666 (46%)

LUTs 178,176 83,600 (46%)

BlockRAMs 336 29 (8%) 27 (8%)

DSP48s 96 96 (100%) 96 (100%)

P&R time 1 days 11 hours 3 minutes 23 seconds



Performance

Measured 

features/ 

parameters

Reference C 

implementation

Hand-

optimized 

reference C

Single 

kernel

Dual 

kernel

# CPUs 2 2

# FPGAs 2 2

FPGA exec (s) 94 47.2

DD time (s) 428.4 226.6 99.4 49.7

DR+RR time (s) 85,859.9 47,598.6 9,943.6 4,975.3

Load/convert (s) 27.4 28.4 28 27.5

Total (s) 86,315.7 47,853.6 10,071 5,052.5

Overall 

Speedup

0.6x 1.0x 4.8x 9.5x
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Discussion: RC100

• Xilinx Virtex 4 VLX200 chip

– Pros

• Large FPGA (89,088 logic slices and 6,048 kbits of total Block RAM)

• Runs at 200 MHz in RC100

– Cons

• Have only 96 18x18 hardware multipliers (DSP48 slices)

– sufficient to implement only 6 double-precision floating-point multipliers 

using Mitrion-C

– this is even less than what was available in the FPGAs used in the second-

generation RASC boards

• Of course additional multipliers can be made out of logic cells, 

however, they require a substantial number of slices

– Observation: while suitable for applications that require only a few 

floating-point multiplications, VLX200 chip is not necessary the best 

choice for scientific computing applications that require double-

precision floating-point operations
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Discussion: RC100

• RC100 blade memory architecture

– Physical: up to five QDR SRAM DIMMs per FPGA, up to 8 MBs per 

DIMM

– Logical: two 128-bit wide banks

– Pros

• Balanced NUMAlink channel bandwidth (3.2 Gbyte/sec) to the 

memories (2x1.6 Gbyte/sec)

– Cons

• Practically, only up to 32 MBs per FPGA since only 4 out of 5 memory 

banks are actually supported by the RASC Core Services

• Low memory granularity (128-bit words only)

– Observation: an off-chip memory layout in which there are multiple 

64-bit wide memory banks is, in general, more advantageous than 

the memory layout used in RC100
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Discussion: RC100

• RASC Software Stack

– Pros

• Direct access to hardware via COP layer

• More abstracted access to hardware via the algorithm layer

– wide scaling enables multiple FPGAs configured with the same bitstream to work 

concurrently on the same problem by automatically dividing the data between them

– an ability to overlap data transfer and calculations via multi-buffering

• Simple and straightforward API

– Cons

• The use of multi-buffering capability requires single-purpose use of each of two 

logical memory banks

– Each bank has to be used either for read or write, but not for both

– Coupled with the fact that there are only two logical memory banks and the low 

memory granularity, the practical use of this capability is greatly limited

• No true streaming capability, data always have to go to SRAM before it can be 

used in the FPGA
– At least with the version of the tools that we used

– It appears that the latest release of RASC Core Services supports this functionality
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Discussion: RC100

• Miscellaneous

– Pros

• Device manager provides a simple bitstream management 

capability

• Extensions to the GNU debugger (gdb) to enable debugging of 

the process executed in the FPGA(s)

• Memory-mapped register (MMR) inputs

• Pre-compiled RASC Core Services IP cores

– Cons

• No direct connection between FPGAs on the blade, no shared 

memory

– if data is to be passed between two FPGAs, it have to go back to 

the host and then return to the appropriate SRAM
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Discussion: Mitrion SDK

• Mitrion-C language

– Pros

• High-level programming language, no need to deal with low-level 

details

• Yet, some of the low-level details are still available, e.g., arbitrary-sized 

numerical data types

• Language designed for parallel programming
– Pipelining, automatic loop unrolling, data dependency-driven code execution

– Cons

• At the time this work was done, the language did not have an efficient 

support for loops with run-time defined number of iterations

– Latest revision of the language includes a new data type, streams, 

that provides the desirable functionality

• Some efforts are required to learn how to use the language efficiently
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Discussion: Mitrion SDK

• SDK for RC100

– Pros

• Both IDE and command line-based interfaces

• Tight integration with RC100 development environment

– the compiler generates all the necessary configuration files, sets up the complex top-

level project and compilation environment, and invokes the downstream compilation 

process for the RC100 RASC platform – a one button solution from the Mitrion-C 

source to the FPGA configuration bitstream

• The latest version of the SDK provides an ability to specify the logic/DSP48 ratio 

when synthesizing multipliers

• FPGA resources utilization is estimated during the compile time

• Code execution time is estimated during the compile time

– Cons

• No support for Memory-mapped register (MMR)

• Runs only at 100 MHz instead of 200 MHz supported by the system

• FPGA resources utilization estimates sometimes are not accurate

• Execution time estimates are not always accurate
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Conclusions

• Suitability of SGI RASC RC100 platform for scientific 

computing applications

– Not the best platform for scientific computing applications that 

involve floating-point multiplications and/or require a substantial 

SRAM memory bandwidth

• Suitability of Mitrion SDK as a development platform 

for SGI RASC RC100 hardware

– A workable solution to program the system

– Incomplete RC100 hardware support

– Suitable for implementing simple kernels
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