
Mitrion-C

Application Development

on SGI Altix 350/RC100

Volodymyr V. Kindratenko¹

Robert J. Brunner¹², Adam D. Myers²

1) Innovative Systems Laboratory (ISL)

National Center for Supercomputing Applications (NCSA)

2) Department of Astronomy

University of Illinois at Urbana-Champaign

National Center for Supercomputing Applications

Research Objectives

• Evaluate suitability of SGI RASC RC100

platform for scientific computing applications

– Focus on applications that require double-precision

floating-point arithmetic

• Evaluate suitability of Mitrion SDK as a

development platform for SGI RASC RC100

hardware

– Language flexibility

– Completeness of hardware support

– Suitability for complex scientific codes

National Center for Supercomputing Applications

Research Approach

• Use an existing HPC application as a test case

– Cosmology application as the driver

– With known performance characteristics on other

platforms

• Implement the application in Mitrion-C

targeting RC100 platform

• Evaluate the implementation, implementation

effort, and resulting performance

– In relation to the hardware and software used to

implement and run the code

National Center for Supercomputing Applications

Presentation Outline

• Background information

– SGI RASC RC100 platform overview

– Mitrion-C application development framework

– Testcase application

• FPGA kernel design and implementation

– Single-core kernel

– Dual-core kernel

• Evaluation discussion

– SGI RASC RC100 blade

– Mitrion SDK for RC100

National Center for Supercomputing Applications

SGI Altix 350 with RC100 blade

• A standalone, single-module SGI Altix 350

– dual-1.4 GHz Intel Itanium 2 system

– 4 GBs of physical memory.

• A single dual-blade chassis with one RC100

blade

– attached to the host system via a NUMAlink 4

interconnect

National Center for Supercomputing Applications

SGI Altix 350

Dual-blade chassis

RC100

blade

NUMAlink
empty

slot

3.2 GB/s

SGI RASC RC100 blade

• Third-generation Reconfigurable Application-Specific Computing

(RASC) hardware module

– Two computational FPGAs, and a special-purpose loader FPGA

– Two peer-to-peer I/O (TIO) ASICs

– Up to 10 QDR SRAM memory modules, configured as two banks to match

the NUMAlink 4 channel bandwidth (3.2 Gbyte/sec) to

the memories (2x1.6 Gbyte/sec).

National Center for Supercomputing Applications

TIO

ASIC

TIO

ASIC

PROM
Loader

FPGA

Algorithm

FPGA 1

Algorithm

FPGA 2

3.2 GB/s

each dir

3.2 GB/s

each dir

3.2 GB/s

each direction

3.2 GB/s

each direction

NL

NL

QDR SRAM 4

QDR SRAM 3

QDR SRAM 2

QDR SRAM 1

QDR SRAM 0

1.6 GB/s

each dir

QDR SRAM 4

QDR SRAM 3

QDR SRAM 2

QDR SRAM 1

QDR SRAM 0

1.6 GB/s

each dir

RASC RC100 blade FPGA

• Xilinx Virtex 4 LX200 (XC4VLX200-FF1513-10) chips

– 200,448 logic cells

– 336 Block RAM/FIFOs

• 6,048 kbits of total BRAM

– 96 DSP48 slices

– and 960 user I/O pins

– maximum clock frequency,

as implemented in the

RC100 blade, is 200 MHz

• A portion of each chip is allocated to the RASC Core

Services logic with the rest of the logic allocated to the

user algorithm block

National Center for Supercomputing Applications

S
S

P
 i
n

te
rf

a
c
e

PIO

ingress

algorithm

control logic

MMRs

user

algorithm

block

external

memory

access

logic

QDR-II

SRAM 0/1

QDR-II

SRAM 2/3

read DMA

engine

write DMA engine

200 MHz

36-bit DDR

(6.4 GB/s/SRAM)

3.2 GB/s

3.2 GB/s

RASC Core Services

• IP cores provided by SGI

– interface between the TIO chip and SRAMs

attached to the FPGA

• user algorithm block has access to two dual-port

memory resources, each is 128-bit wide and up to 1

million words deep (16 MB per port per bank)

– provide memory-mapped register (MMR) inputs

and algorithm control logic

• user algorithm block has direct access to MMR inputs

and access to SRAM via external memory logic

implemented as part of the RASC Core Services

National Center for Supercomputing Applications

RASC software stack

• User application interacts with the device either via the co-

processor or algorithm layer, their use is mutually exclusive

– the Co-Processor (COP) layer: an interface to work with individual devices

– the algorithm layer, built on top of the COP layer, treats a collection of

devices as a single logical device
• RASC kernel driver

• Device Manager is a user-space utility for bitstream management

– Implemented on top of device library
• FPGA bitstream download driver

National Center for Supercomputing Applications

COP Layer

Algorithm Layer

Dev lib

Kernel driver Download driver

Algorithm FPGA Loader FPGA

Device

manager

User application

User application

HW

OS

lib

app

COP layer API usage example

• // allocate system memory
– char a0_in[bram_size];

– char b0_in[bram_size];

– char b0_out[bram_size];

• // populate with data
– double *xi = (double*)(a0_in+i*16);

– *xi = data1[i].x;

• // do FPGA work
– rasclib_cop_send(algorithm_id, "a0_in", a0_in, bram_size);

– rasclib_cop_send(algorithm_id, "b0_in", b0_in, bram_size);

– rasclib_cop_go(algorithm_id);

– rasclib_cop_receive(algorithm_id, "b0_out", b0_out, bram_size);

– rasclib_cop_commit(algorithm_id, NULL);

– rasclib_cop_wait(algorithm_id);

• // process results
– long long *bin_val = (long long*)b0_out;

– res = bin_val[2*k+1];

National Center for Supercomputing Applications

S
S

P
 i
n

te
rf

a
c
e

PIO

ingress

algorithm

control logic

MMRs

user

algorithm

block

external

memory

access

logic

QDR-II

SRAM 0/1

QDR-II

SRAM 2/3

read DMA

engine

write DMA engine

200 MHz

36-bit DDR

(6.4 GB/s/SRAM)

3.2 GB/s

3.2 GB/s

Mitrion SDK for RC100

• Framework in which applications for RC100 can be

implemented

– Mitrion-C language

– Mitrion-C compiler

– Functional simulator/

debugger

– Mitrion Virtual

Processor

and processor

configurator

– Mitrion Host

Abstraction

Layer (MITHAL)

library

National Center for Supercomputing Applications

 Mitrion SDK

Source code (.mitc)

Mitrion-C compiler

Virtual processor machine code

Simulator/debugger Processor configurator

Processor

architecture

Hardware design (.vhdl)

Mitrion-C and Virtual Processor

• Mitrion-C

– Similar to C about as much as Java is

similar to C

– Implicitly parallel

– Describes data dependencies rather than

order-of-execution

– Allows fine-grain parallelism to be

described

– Syntactic support to make design

decisions regarding parallelism

– Designed to preserve and reveal

parallelism in the algorithm

• Mitrion Virtual Processor

– A massively parallel high-performance

processor for FPGAs that executes

software written in the Mitrion-C

programming language

– Processor’s architecture follows a cluster

model, placing all processing nodes

within an FPGA and creating an ad-hoc

network between them

• Mitrion-C 2D dot product code example

Mitrion-C 1.0;

// Options: -cpp

#define NUM_WORDS 1024

#define NUM_WORDS_1 1023

#define ExtRam mem bits:128[8192]

(ExtRam, ExtRam) main(ExtRam mem_a, ExtRam mem_b)

{

(mem_a1, mem_b1) = foreach(i in <0.. NUM_WORDS_1>)

{

(vars, mem_a1) = _memread(mem_a, i);

float:24.8[4] var = vars;

a = var[0];

b = var[1];

c = var[2];

d = var[3];

res = a * b + c * d;

bits:32 res_bits32 = res;

bits:128 res_bits128 = res_bits32;

mem_b1 = _memwrite(mem_b, i, res_bits128);

} (mem_a1, mem_b1);

(mem_a_final, mem_b_final) = _wait(mem_a1, mem_b1);

} (mem_a_final, mem_b_final);

National Center for Supercomputing Applications

National Center for Supercomputing Applications

Mitrion-C Simulator/debugger

---------- Summary: Bandwidth Graph ---------------

ROOT

| l: 1067.0 ch: 1024 d: 1.042

| L limited. Relaxed ch 1067 l 1067

| body l: 1067 ch: 1024 relaxed ch: 1067

|--1

| iterations: 1024 bottleneck: 1.042

| main/foreach<1024>

| l: 1067.0 ch: 1024 d: 1.042

| BW limited. Relaxed ch 1067 l 1067

| body ch: 1.0 relaxed ch: 1

-------- End Summary: Bandwidth Graph --------------

----[Execution time: 10.670us, 1067 steps@100MHz

----[Executions per second: 93720.712

---------- Summary ---------------------------------

Memories:

External: 8192x128 1 readers and 0 writers.

External: 8192x128 0 readers and 1 writers.

---------- End Summary -----------------------------

---------- Summary: Hardware resources used --------

Target FPGA is Xilinx Virtex-II XC2V6000-6FF1517C

Target Clock Frequency is 100MHz

18861 Flip Flops out of 67584 = 27% FlipFlop usage

128 16-bit shiftregisters

25 BlockRAMs out of 144 = 17% BlockRAM usage

8 MULT18X18s out of 144 = 5% MULT18X18 usage

-------- End Summary: Hardware resources used ------

National Center for Supercomputing Applications

Mitrion-C/RASC Code Design Flow

Source
(Mitrion-C)

Logic
synthesis

Mitrion C compiler

Core services
.vhdl

Place & route

.vhdl netlist
RASC
library

FPGA code
(bitsream)

Integration w/
Core Services

Source
(C)

C compiler

binary
objects

Linker

Executable
Config. files
generation

Algorithm configuration

.vhdl

Mitrion processor configurator

National Center for Supercomputing Applications

Testcase application: TPACF

• TPACF, denoted as (), is the
frequency distribution of
angular separations 
between celestial objects in
the interval (,  + )
–  is the angular distance

between two points

• Example
– Red Points are, on average,

randomly distributed, black
points are clustered

– Red points: ()=0

– Black points: ()>0

– Can vary as a function of
angular distance,  (blue circles)

– Red: ()=0 on all scales

– Black: () is larger on smaller
scales

National Center for Supercomputing Applications

TPACF Computational Kernel

• The angular correlation function is calculated using the estimator

derived by Landy & Szalay (1993):

• where DD() and RR() are the angular separation distributions

(autocorrelation) of the data and random points, respectively, and

DR() is the angular separation distribution (cross-correlation)

between the data and random points

• The problem of computing angular separation distributions can be

expressed as follows:

– Input: Set of points x1, .., xn distributed on the surface of a sphere, and a small

number M of bins: [q0, q1), [q1, q2), .., [qM-1, qM].

– Output: For each bin, the number of unique pairs of points (xi, xj) for which the

angular distance is in the respective bin: Bl = |{ij: ql-1 <= xi·xj < ql}|.

)(

)()(2)(
)(






RR

RRDRDD 


Reference C implementation

for (i = 0; i < ((autoCorrelation) ? n1-1 : n1); i++)

{

double xi = data1[i].x;

double yi = data1[i].y;

double zi = data1[i].z;

for (j = ((autoCorrelation) ? i+1 : 0); j < n2; j++)

{

double dot = xi * data2[j].x + yi * data2[j].y + * data2[j].z;

// binary search

min = 0; max = nbins;

while (max > min+1)

{

k = (min + max) / 2;

if (dot >= binb[k]) max = k;

else min = k;

};

if (dot >= binb[min]) data_bins[min] += 1;

else if (dot < binb[max]) data_bins[max+1] += 1;

else data_bins[max] += 1;

}

}
National Center for Supercomputing Applications

pi

pj


q0 q1 q2 q3 q4 q5

FPGA Kernel Design

• Data storage/access

requirements

– Need to be able to read

all three coordinates for a

given point in one clock

cycle

– Need to fit both datasets

in SRAM

– Need to store output

results in SRAM (at the

end of the calculations)

National Center for Supercomputing Applications

x1 y1 z1 0

x2 y2 z2 0

xn yn zn 0

x1 y1 z1 0

x2 y2 z2 0

xm ym zm 0

SRAM 1 SRAM 2

d
a
ta

s
e
t

1
d

a
ta

s
e
t

2
1 b1

l bl

b
in

c
o

u
n

ts

Kernel re-written in Mitrion-C

Mitrion-C 1.0;

// options: -cpp

#define ExtRAM mem bits:128[262144]

#define NPOINTS 97160

#define NPOINTS_1 97159

#define NBINS 32

(ExtRAM, ExtRAM) main (ExtRAM a0, ExtRAM b0)

{

float:53.11[NBINS] binb = [0.99999999999576916210, 0.99999999998937272316, 0.99999999997330546453,

0.99999999993294641509, 0.99999999983156895311, 0.99999999957692020658, 0.99999999893727176126,

0.99999999733054723006, 0.99999999329463784559, 0.99999998315689186956, 0.99999995769202532081,

0.99999989372717357217, 0.99999973305473655039, 0.99999932946385972077, 0.99999831568965213968,

0.99999576920548627346, 0.99998937273599586284, 0.99997330559122843407, 0.99993294712784397404,

0.99983157364604546835, 0.99957695008220059929, 0.99893745993583771270, 0.99733173469789593302,

0.99330212814615548300, 0.98320412044889693437, 0.95798951231548890028, 0.89559620527121441835,

0.74472199710330100331, 0.40112945079596057374, -0.26150795041456115220, -0.97304487057982380627,

-100.0];

uint:64[NBINS] binsA = [0, 0];

ExtRAM a3 = a0;

ExtRAM b3 = b0;

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS

Kernel re-written in Mitrion-C

// loop in one data set

(bins, afinal, bfinal) = for (i in <0 .. NPOINTS_1>)

{

(xi, yi, zi, a1, b1) = readpoint(a0, b0, i); // read next point

uint:64[NBINS] binsB = binsA;

ExtRAM a2 = a0;

ExtRAM b2 = b0;

(binsA, a3, b3) = for(j in <0 .. NPOINTS_1>)

{

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+NPOINTS); // read next point

float:53.11 dot = xi * xj + yi * yj + zi * zj; // compute dot product

int:8 indx = findbin(dot, binb); // find what bin it belongs to

// update bin

binsB = foreach (bin in binsB by ind) if (ind == indx) bin + 1 else bin;

} (binsB, a2, b2);

} (binsA, a3, b3);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS

Kernel re-written in Mitrion-C

ExtRAM bw = b0;

int:64 idx = 0;

int:64<NBINS> binsR = reformat(bins, <NBINS>);

bfinal2 = for (o in binsR) // write results back to CPU

{

bits:128 out_val = [idx, o];

bw = _memwrite(bfinal, idx, out_val);

idx = idx + 1;

} bw;

bdone2 = _wait(bfinal2);

} (afinal, bdone2);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS

FPGA Resources Utilization

Total

available

Mitrion-C

estimate

After place

and route

Slices 89,088 42,346 (47%)

Flip Flops 178,176 51,327 (29%) 50,128 (28%)

LUTs 178,176 48,724 (27%)

BlockRAMs 336 29 (8%) 27 (8%)

DSP48s 96 48 (50%) 48 (50%)

P&R time 5 hours 24 minutes 7 seconds

National Center for Supercomputing Applications

Dual kernel in Mitrion-C

(bins1, bins2, afinal, bfinal) = for (i in <0 .. 48579>)

{

(xi1, yi1, zi1, a0a, b0a) = readpoint(a0, b0, i*2); // read next 2 points

(xi2, yi2, zi2, a1, b1) = readpoint(a0a, b0a, i*2+1);

/* ... Omitted code … */

(binsA1, binsA2, a3, b3) = for(j in <0 .. 97159>)

{

// read next point

(xj, yj, zj, a2, b2) = readpoint(a1, b1, j+97160);

float:53.11 dot1 = xi1 * xj + yi1 * yj + zi1 * zj; // compute dot product

float:53.11 dot2 = xi2 * xj + yi2 * yj + zi2 * zj;

int:8 indx1 = findbin(dot1, binb); // find what bin it belongs to

int:8 indx2 = findbin(dot2, binb);

binsB1 = foreach (bin in binsB1 by ind) if (ind == indx1) bin + 1 else bin; // update bin

binsB2 = foreach (bin in binsB2 by ind) if (ind == indx2) bin + 1 else bin;

} (binsB1, binsB2, a2, b2);

} (binsA1, binsA2, a3, b3);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS 1

LS 2

Dual kernel in Mitrion-C

// write results back to CPU

mem bits:128[262144] bw = b0;

int:64 idx = 0;

int:64<32> binsR1 = reformat(bins1, <32>);

int:64<32> binsR2 = reformat(bins2, <32>);

bfinal2 = for (o1, o2 in binsR1, binsR2)

{

int:64 total_count = o1 + o2;

bits:128 out_val = [idx, total_count];

bw = _memwrite(bfinal, idx, out_val);

idx = idx + 1;

} bw;

bdone2 = _wait(bfinal2);

} (afinal, bdone2);

National Center for Supercomputing Applications

Algorithm FPGA

SRAM 1 SRAM 2

LS 1

LS 2

FPGA Resources Utilization

National Center for Supercomputing Applications

Total

available

Mitrion-C

estimate

After place

and route

Slices 89,088 70,301 (78%)

Flip Flops 178,176 80,490 (45%) 82,666 (46%)

LUTs 178,176 83,600 (46%)

BlockRAMs 336 29 (8%) 27 (8%)

DSP48s 96 96 (100%) 96 (100%)

P&R time 1 days 11 hours 3 minutes 23 seconds

Performance

Measured

features/

parameters

Reference C

implementation

Hand-

optimized

reference C

Single

kernel

Dual

kernel

CPUs 2 2

FPGAs 2 2

FPGA exec (s) 94 47.2

DD time (s) 428.4 226.6 99.4 49.7

DR+RR time (s) 85,859.9 47,598.6 9,943.6 4,975.3

Load/convert (s) 27.4 28.4 28 27.5

Total (s) 86,315.7 47,853.6 10,071 5,052.5

Overall

Speedup

0.6x 1.0x 4.8x 9.5x

National Center for Supercomputing Applications

Discussion: RC100

• Xilinx Virtex 4 VLX200 chip

– Pros

• Large FPGA (89,088 logic slices and 6,048 kbits of total Block RAM)

• Runs at 200 MHz in RC100

– Cons

• Have only 96 18x18 hardware multipliers (DSP48 slices)

– sufficient to implement only 6 double-precision floating-point multipliers

using Mitrion-C

– this is even less than what was available in the FPGAs used in the second-

generation RASC boards

• Of course additional multipliers can be made out of logic cells,

however, they require a substantial number of slices

– Observation: while suitable for applications that require only a few

floating-point multiplications, VLX200 chip is not necessary the best

choice for scientific computing applications that require double-

precision floating-point operations

National Center for Supercomputing Applications

Discussion: RC100

• RC100 blade memory architecture

– Physical: up to five QDR SRAM DIMMs per FPGA, up to 8 MBs per

DIMM

– Logical: two 128-bit wide banks

– Pros

• Balanced NUMAlink channel bandwidth (3.2 Gbyte/sec) to the

memories (2x1.6 Gbyte/sec)

– Cons

• Practically, only up to 32 MBs per FPGA since only 4 out of 5 memory

banks are actually supported by the RASC Core Services

• Low memory granularity (128-bit words only)

– Observation: an off-chip memory layout in which there are multiple

64-bit wide memory banks is, in general, more advantageous than

the memory layout used in RC100

National Center for Supercomputing Applications

Discussion: RC100

• RASC Software Stack

– Pros

• Direct access to hardware via COP layer

• More abstracted access to hardware via the algorithm layer

– wide scaling enables multiple FPGAs configured with the same bitstream to work

concurrently on the same problem by automatically dividing the data between them

– an ability to overlap data transfer and calculations via multi-buffering

• Simple and straightforward API

– Cons

• The use of multi-buffering capability requires single-purpose use of each of two

logical memory banks

– Each bank has to be used either for read or write, but not for both

– Coupled with the fact that there are only two logical memory banks and the low

memory granularity, the practical use of this capability is greatly limited

• No true streaming capability, data always have to go to SRAM before it can be

used in the FPGA
– At least with the version of the tools that we used

– It appears that the latest release of RASC Core Services supports this functionality

National Center for Supercomputing Applications

Discussion: RC100

• Miscellaneous

– Pros

• Device manager provides a simple bitstream management

capability

• Extensions to the GNU debugger (gdb) to enable debugging of

the process executed in the FPGA(s)

• Memory-mapped register (MMR) inputs

• Pre-compiled RASC Core Services IP cores

– Cons

• No direct connection between FPGAs on the blade, no shared

memory

– if data is to be passed between two FPGAs, it have to go back to

the host and then return to the appropriate SRAM

National Center for Supercomputing Applications

Discussion: Mitrion SDK

• Mitrion-C language

– Pros

• High-level programming language, no need to deal with low-level

details

• Yet, some of the low-level details are still available, e.g., arbitrary-sized

numerical data types

• Language designed for parallel programming
– Pipelining, automatic loop unrolling, data dependency-driven code execution

– Cons

• At the time this work was done, the language did not have an efficient

support for loops with run-time defined number of iterations

– Latest revision of the language includes a new data type, streams,

that provides the desirable functionality

• Some efforts are required to learn how to use the language efficiently

National Center for Supercomputing Applications

Discussion: Mitrion SDK

• SDK for RC100

– Pros

• Both IDE and command line-based interfaces

• Tight integration with RC100 development environment

– the compiler generates all the necessary configuration files, sets up the complex top-

level project and compilation environment, and invokes the downstream compilation

process for the RC100 RASC platform – a one button solution from the Mitrion-C

source to the FPGA configuration bitstream

• The latest version of the SDK provides an ability to specify the logic/DSP48 ratio

when synthesizing multipliers

• FPGA resources utilization is estimated during the compile time

• Code execution time is estimated during the compile time

– Cons

• No support for Memory-mapped register (MMR)

• Runs only at 100 MHz instead of 200 MHz supported by the system

• FPGA resources utilization estimates sometimes are not accurate

• Execution time estimates are not always accurate

National Center for Supercomputing Applications

Conclusions

• Suitability of SGI RASC RC100 platform for scientific

computing applications

– Not the best platform for scientific computing applications that

involve floating-point multiplications and/or require a substantial

SRAM memory bandwidth

• Suitability of Mitrion SDK as a development platform

for SGI RASC RC100 hardware

– A workable solution to program the system

– Incomplete RC100 hardware support

– Suitable for implementing simple kernels

National Center for Supercomputing Applications

Acknowledgements

• Work was funded in part by NSF grant SCI 05-

25308 and by NASA grant NNG06GH15G

• An SGI Altix 350 system with an RC100 blade

was kindly made available by SGI

– Special thanks to Matthias Fouquet-Lapar, Tony Galieti,

and Dick Riegner, all from SGI, for their help and

support with the SGI system

• Mitrion SDK for RC100 RASC system was

kindly provided by Mitrionics AB

– Special thanks for Stefan Möhl and Jace Mogill, both

from Mitrionics AB, for their help with Mitrion SDK

National Center for Supercomputing Applications

