Skip to main content

NSF awards NCSA funds for a deep learning research instrument

The rapid development of deep neural networks and their function in artificial intelligence, machine learning, and computer vision is transforming many disciplines. With applications in voice and image recognition, speech processing, healthcare, education and a plethora of other arenas, teaching computers to behave like the human brain, more than simply compute, is essential to technological advancement.

You may not think about it when you speak to your phone’s virtual assistant, tag a picture on Facebook or use an app to remove your background in a video-chat, but all of those tasks use some form of “deep learning,” where computers are taught to recognize situations and act upon them, inspired by how living brains work. In order to be able to teach computers to think rather than compute, however, a system that allows researchers to explore ways to harness multiple systems in developing and applying deep learning algorithms is essential.

In order to lay the groundwork for these deep neural networks, and in turn study deep learning at a large scale, Dr. William “Bill” Gropp, director of the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign, Roy Campbell and Jian Peng from the Computer Science Department at the University of Illinois at Urbana-Champaign, and Volodymyr Kindratenko, also of NCSA, have been awarded over $2.7 million from the National Science Foundation (NSF) Major Research Instrumentation (MRI) program to build a dedicated research instrument to expand deep learning research.

“This deep learning instrument will bolster current relevant deep learning research communities here at the University of Illinois, allowing researchers to leverage deep learning more than they ever could before,” said Bill Gropp. “This NSF grant will allow the University of Illinois to expand deep learning research opportunities to a wider group of interested researchers, including undergraduates, and will help to develop the deep learning workforce.”

The deep-learning instrument will open the door to new industry-academia collaborations that have never before been possible. Furthermore, the blueprint of the system architecture and the instrument will be publicly available, allowing varied domains to build off of these deep learning frameworks.

“The NSF-funded deep learning research instrument grant will support our excellent university research team as they investigate new systems and algorithms for machine learning and data analytics that extract actionable knowledge from the massive sets of data available today and will contribute to new scientific and commercial applications,” said co-principal investigator Dr. Roy H. Campbell, professor of computer science at Illinois.

Campbell continued. “The scalability, sharing of resources, and ease of use of these tools is essential to encourage widespread deployment in the industrial environment. As an example of some of the applications that the grant will enable, the new system will accelerate our work in analyzing neurological disorder multi-modal datasets including genomic, imaging, and clinical information. The system will enable us to analyze these complex datasets and develop new discoveries and predictive models.”

The new deep learning infrastructure will be constructed in collaboration with IBM and NVIDIA.

Sign up to be updated on deep learning research and opportunities at NCSA.

Disclaimer: Due to changes in website systems, we've adjusted archived content to fit the present-day site and the articles will not appear in their original published format. Formatting, header information, photographs and other illustrations are not available in archived articles.

Back to top